
Report on novel spatial-keyword search

techniques

Akrivi Vlachou, Postdoctoral Researcher

akrivi
Stamp

Abstract

Nowadays an increasing amount of web-accessible information on spatial objects

becomes available to the public every day. Apart from the spatial location of

an object (e.g., a point of interest), additional descriptive information typically

includes textual description as well as various ratings, often user generated. Mod-

ern applications employ spatio-textual queries, which take into account both the

spatial location of an object and its textual similarity to retrieve the most rele-

vant objects. However, existing applications provide a limited functionality to the

users. For example, several meaningful queries cannot be expressed by existing

approaches and motivate our novel prototype system. In the first chapter, we ad-

dress this limitation by supporting ranked retrieval of objects of interest by taking

into account the quality of facilities in their vicinity, but also their textual simi-

larity to user defined keywords. In the second chapter, we analyze the properties

of geotagged photos of Flickr, and propose novel location-aware tag recommen-

dation methods. Both of the above techniques are novel spatial-keyword search

methods.

akrivi
Stamp

Chapter 1

Preference Queries

Nowadays an increasing amount of web-accessible information on spatial objects

becomes available to the public every day. Apart from the spatial location of

an object (e.g., a point of interest), additional descriptive information typically

includes textual description as well as various ratings, often user-generated. Mod-

ern applications employ spatio-textual queries, which take into account both the

spatial location of an object and its textual similarity to retrieve the most relevant

objects. Arguably, existing applications do not support effective spatio-textual re-

trieval of objects based on the quality of other facilities in their neighborhood. In

this report, we address this limitation by supporting ranked retrieval of objects of

interest by taking into account the quality of facilities in their vicinity, but also

their textual similarity to user defined keywords. To this end, we propose a novel

query type, termed top-k spatio-textual preference query, which is not currently

supported by existing approaches. Moreover, we present a unified framework for

query processing and we study many variations of the problem, namely for (i)

range queries, (ii) influence queries, and (iii) nearest neighbor queries, and we de-

akrivi
Stamp

sign I/O efficient query processing algorithms. Among the benefits arising is the

low programming cost at which the framework can be easily extended to cover

other complex query types. We also suggest an alternative indexing approach that

empowers search methods for the proposed query types. Last but not least, we

evaluate all methods and their performance by means of experimental evaluation.

1.1 Introduction

An increasing number of applications support location-based queries, which re-

trieve the most interesting spatial objects based on their geographic location. Re-

cently, spatio-textual queries have attracted much attention, as such queries com-

bine location-based retrieval with textual information that describes the spatial

objects. Most of the existing queries only focus on retrieving objects that satisfy

a spatial constraint ranked by their spatial-textual similarity to the query point.

However, users are quite often interested in spatial objects (data objects) based

on the quality of other facilities (feature objects) that are located in their vicinity.

Such features objects are typically described by non-spatial numerical attributes

such as quality or ratings, in addition to the textual information that describes

their characteristics. In this report, we propose a novel and more expressive query

type, called spatio-textual preference query, for ranked retrieval of data objects

based the textual relevance and the non-spatial score of feature objects in their

neighborhood.

Consider for example, a tourist that looks for “hotels that have nearby a good

Italian restaurant that serves pizza”. Fig. 1.1 depicts a spatial area containing

hotels (data objects) and restaurants (feature objects). The quality of the restau-

akrivi
Stamp

rants based on existing reviews is depicted next to the restaurant. Each restaurant

also has textual information, such as pizza or steak, which describes additional

characteristics of the restaurant. The tourist specifies also a spatial constraint (in

the figure depicted as a range around each hotel) to restrict the distance of the

restaurant to the hotel. Obviously, the hotel h2 is the best option for a tourist

that poses the aforementioned query. In the general case, more than one type of

feature objects may exist in order to support queries such as “hotels that have

nearby a good Italian restaurant that serves pizza and a cheap coffeehouse that

serves muffins”. Even though spatial preference queries have been studied be-

fore [23, 24, 18], their definition ignores the available textual information. In our

example, the spatial preference query would correspond to a tourist that searches

for “hotels that are nearby a good restaurant” and the hotel h1 would always be

retrieved, irrespective of the textual information.

r
2
(0.9)

5

10

5
 10

x

y

h
1

h
2

r
3
(0.6)

r
1
(0.4)

Chinese, Asian

Italian,

Pizza

Steak,

Barbecue

Pizza, Burgers

r
4
(0.5)

Figure 1.1: Associating spatial data objects with aggregate data.

In this report, we define top-k spatio-textual preference queries and provide

a paradigm for processing this novel query type. A main difference compared to

akrivi
Stamp

traditional spatial preference queries [23, 24, 18] is that the rank of a data object

changes depending on the query keywords, which renders techniques [18] that rely

on materialization inappropriate. Most importantly, processing spatial preference

queries is costly in terms of both I/O and execution time [23, 24], because it may

require searching the spatial neighborhood of all data objects before reporting

the top-k. Thus, extending spatial preference queries for supporting also textual

information is challenging, since the new query type is more expensive due to the

overhead imposed by the similarity of the query keywords to the facilities’ textual

descriptions.

We develop and evaluate two different paradigms for spatio-textual preference

queries that rely on spatio-textual indexing techniques. The first method, called

Spatio-Textual Data Scan (STDS), computes the spatio-textual score τ(p) of each

data object p ∈ O and then reports the k data objects with the highest score.

The main focus of this algorithm is to reduce the cost required for computing the

spatio-textual score of the data objects. A different strategy followed by our sec-

ond method, called Spatio-Textual Preference Search (STPS), is to retrieve first

highly ranked and relevant feature objects and then search for data objects nearby

those feature objects. The main challenge we tackle with this approach is deter-

mining efficiently the best feature objects from all different feature sets that do

not violate the spatial constraint.

The remainder of this report is organized as follows: Section 2.5 overviews

the related work. In Section 1.3, we define the spatio-textual preference query.

We present the experimental evaluation in Section 1.8 and we conclude in Sec-

tion 1.9.

akrivi
Stamp

1.2 Related Work

Recently several approaches have been proposed for spatial-keyword search. In

a previous seminal work [10], the problem of distance-first top-k spatial keyword

search is studied. To this end, the authors propose an indexing structure (IR2-

Tree) that is a combination of an R-Tree and signature files. The IR-Tree was

proposed in another conspicuous work [8, 15], which is an spatio-textual indexing

approach that employs a hybrid index that augments the nodes of an R-Tree with

inverted indices. The inverted index at each node refers to a pseudo-document

that represents all the objects under the node. During query processing, the index

is exploited to retrieve the top-k data objects, defined as the k objects that have

the highest spatio-textual similarity to a given data location and a set of keywords.

Moreover, in [17] the Spatial Inverted Index (S2I) was proposed for processing

top-k spatial keyword queries. The S2I index maps each keyword to a distinct

aggregated R-Tree or to a block file that stores the objects with the given term. All

these approaches focus on ranking the data objects based on their spatio-textual

similarity to a query point and some keywords. This is different from our work,

which ranks the data objects based on the quality and relevance of the facilities in

their spatial neighborhood.

Prestige-based spatio-textual retrieval was studied in [6]. The proposed query

takes into account both location proximity and prestige-based text relevance. The

m-closest keywords query [25] aims to find the spatially closest data objects that

match with the query keywords. The authors in [7] study the spatial group key-

word query that retrieves a group of data objects such that all query keywords

appear in at least one data object textual description and such that objects are

akrivi
Stamp

nearest to the query location and have the lowest inter-object distances. These

approaches focus on finding a set of data objects that are close to each other and

relevant to a given query, whereas in this report we rank the data objects based on

the facilities in their spatial neighborhood.

Ranking of data objects based on their spatial neighborhood without support-

ing keywords has been studied in [22, 9, 23, 24, 18]. Xia et al. studied the problem

of retrieving the top-k most influential spatial objects [22], where the score of a

data object p is defined as the sum of the scores of all feature objects that have p

as their nearest neighbor. Yang et al. studied the problem of finding an optimal

location [9], which does not use candidate data objects but instead searches the

space. Yiu et al. first considered computing the score of a data object p based on

feature objects in its spatial neighborhood from multiple feature sets [23, 24] and

defined top-k spatial preference queries. In another line of work, a materialization

technique for top-k spatial preference queries was proposed in [18] which leads

to significant savings in both computational and I/O cost during query processing.

The main difference is that our novel query is defined in addition by a set of key-

words that express desirable characteristics of the feature objects (like “pizza” for

a feature object that represents a restaurant).

Finally, spatio-textual similarity joins were recently studied in [3]. Given two

data sets, the query retrieves all pairs of objects that have spatial distance smaller

than a given value and at the same time a textual similarity that is larger than a

given value. This differs from the top-k spatio-textual preferences query, because

the spatio-textual similarity join does not rank the data objects and some data

objects may appear more than once in the result set.

akrivi
Stamp

1.3 Problem Statement

Given an object dataset O and a set of c feature datasets {Fi | i ∈ [1, c]}, in

this report, we address the problem of finding k data objects that have in their

spatial proximity highly ranked feature objects that are relevant to the given query

keywords. Each data object p ∈ O has a spatial location. Similarly, each feature

object t ∈ Fi is associated with a spatial location but also with a non-spatial score

t.s that indicates the goodness (quality) of t and its domain of values is the range

[0, 1]. Moreover, t is described by set of keywords t.W that capture the textual

description of the feature object t. Figure 1.2 depicts an example of a set of feature

objects that represent restaurants and shows the non-spatial score and the textual

information. Table 1.1 provides an overview of the symbols used in this report.

Symbol Description
O Set of data objects
p Data object, p ∈ O

c Number of feature sets
Fi Feature sets, i ∈ [1, c]

t Feature object, t ∈ Fi

t.s Non-spatial score of t
t.W Set of keywords of t

dist(p, t) Distance between p and t

sim(t,W) Textual similarity between t andW
s(t) Preference score of t
τi(p) Preference score of p based on Fi

τ(p) Spatio-textual preference score of p

Table 1.1: Overview of symbols.

The goal is to find data objects located nearby feature objects that (i) are of

high quality and (ii) have a high similarity to the user specified keywords. Thus,

the score of the feature object t captures not only the non-spatial score of the

akrivi
Stamp

name rating x y textual description
r1 Beijing Restaurant 0.6 1 2 Chinese, Asian
r2 Daphne’s Restaurant 0.5 4 1 Greek, Mediterranean
r3 Espanol Restaurant 0.8 5 8 Italian, Spanish, European
r4 Golden Wok 0.8 2 3 Chinese, Buffet
r5 John’s Pizza Plaza 0.9 8 4 Pizza, Sandwiches, Subs
r6 Ontario’s Pizza 0.8 7 6 Pizza, Italian
r7 Oyster House 0.8 6 10 Seafood, Mediterranean
r8 Small Bistro 1.0 3 7 American, Coffee, Tea, Bistro

Figure 1.2: Feature Set (Restaurants)
name rating x y textual description

c1 Bakery & Cafe 0.6 4 1 Cake, Bread, Pastries
c2 Coffee House 0.5 4 7 Cappuccino,Toast, Decaf
c3 Coffe Time 0.8 3 10 Cake, Toast, Donuts
c4 Cafe Ole 0.6 6 2 Cappuccino, Iced Coffee, Tea
c5 Royal Coffe Shop 0.9 5 5 Muffins, Croissants,Espresso
c6 Mocha Coffe House 1.0 10 3 Macchiato, Espresso, Decaf
c7 The Terrace 0.7 6 9 Muffins, Pastries, Espresso
c8 Espresso Bar 0.4 7 6 Croissants, Decaf, Tea

Figure 1.3: Feature Set (Coffeehouses)

feature, but its textual similarity to a user specified set of query keywords.

Definition 1 The preference score s(t) of feature object t based on a user-specified

set of keywordsW is defined as s(t) = (1−λ)·t.s+λ·sim(t,W), where λ ∈ [0, 1]

and sim() is a textual similarity function.

The textual similarity between the keywords of the feature and the set W is

measured by sim(t,W) and its domain of values is the range [0, 1]. The parameter

λ is the smoothing parameter that determines how much the score of the feature

should be influenced by the textual information. For the rest of the report, we

assume that the textual similarity is equal to the Jaccard similarity between the

keywords of the feature objects and the user-specified keywords: sim(t,W) =

|t.W
∩

W|
|t.W

∪
W| .

For example, consider the restaurants depicted in Figure 1.2. Given a set of

keywords W = {italian, pizza} and λ = 0.5 the restaurant with the highest

preference score is Ontario’s Pizza with a preference score s(r6) = 0.9, while the

akrivi
Stamp

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

p

r1

r2

r3

r4

r5

r6

r7

r8

Figure 1.4: An accute example of a STPQ query.

score of Beijing Restaurant is s(r1) = 0.3, since none of the given keywords are

included in the description of Beijing Restaurant.

Given a spatio-textual preference query Q defined by an integer k, a range r

and c-sets of keywords Wi, the preference score of a data object p ∈ O based

on a feature set Fi is defined by the scores of feature objects t ∈ Fi in its spatial

neighborhood, whereas the overall spatio-textual score of p is defined by taking

into account all feature sets Fi, 1 ≤ i ≤ c.

Definition 2 The preference score τi(p) of data object p based on the feature set

Fi is defined as: τi(p) = max{s(t) | t ∈ Fi : dist(p, t) ≤ r and sim(t,Wi) >

0}.

The dist(p, t) denotes the spatial distance between data object p and feature

object t and, in this report, we employ the Euclidean distance function. Continuing

the previous example, Figure 1.4 shows the spatial location of the restaurants in

Figure 1.2 and a data point p that represents a hotel. The preference score of

p based on the restaurants in its neighborhood (assuming r = 3.5 and W =

akrivi
Stamp

{italian, pizza}) is equal to the score of r6 (τi(p) = s(r6) = 0.9), which is the

best restaurant in the neighborhood of p.

Definition 3 The overall spatio-textual score τ(p) of data object p is defined as:

τ(p) =
∑

i∈[1,c] τi(p).

Figure 1.3 shows a second feature set that represents coffeehouses. For a

tourist that looks for a good hotel that has nearby a good Italian restaurant that

serves pizza and a good coffeehouse that serves espresso and muffins, the score of

p would be τ(p) = s(r6) + s(c5) = 0.9 + 0.78233 = 1.6833.

Problem 1 Top-k Spatio-Textual Preference Queries(STPQ): Given a query Q,

defined by an integer k, a radius r and c-sets of keywords Wi, find the k data

objects p ∈ O with the highest spatio-textual score τ(p).

1.4 Indexing Principles

The main difference of top-k spatio-textual preference queries to traditional spatio-

textual search is that the ranking of a data object does not depend only on spatial

location and textual information, but also on the non-spatial score of the feature

object. In particular, the preference score s(t) of feature object t is defined by its

textual description and its non-spatial score, while the spatial location is used as

a filter for computing the preference score τi(p) of data object p. Thus, efficient

indexing of the textual description and the non-spatial score of feature objects is a

significant factor for designing efficient algorithms for the STPQ query.

Indexing principles: In this report, we assume that the data objects O are indexed

by an R-Tree, denoted as rtree. However, for the feature objects, it is impor-

akrivi
Stamp

tant that the non-spatial score and the textual description are indexed additionally.

Each dataset Fi can be indexed by any spatio-textual index that relies on a spatial

hierarchical index (such as the R-Tree). However, each entry e of the index must

in addition maintain: (i) the maximum value of t.s of any feature t in the sub-tree,

denoted as e.s, and (ii) a summary (e.W) of all keywords of any feature t in the

sub-tree. To ensure correctness of our algorithms, the main property that needs to

hold for any t stored in the sub-tree rooted by the entry e is

s(e) = (1− λ) · e.s+ λ · sim(e,W) ≥ s(t)

The above property guarantees that the preference score s(t) of a feature object

t is bounded by the score s(e) of its ancestor node e. The efficiency of the algo-

rithms directly depends on the tightness of this bound. In turn, this depends on the

similarity between the textual description and the non-spatial score of the features

objects that are indexed in the same node.

The remaining question is whether existing spatio-textual indexes (or adapta-

tions thereof) can be employed to support the STPQ query. For example, if the

IR2-tree is augmented to also store in all nodes the maximum non-spatial score

of the subsumed feature objects, then it can be used for supporting top-k spatio-

textual preference queries. In this case, the summary of the keywords of an entry

can be a signature of the keywords in the sub-tree and the above property holds as

the signature of a non-leaf entry is the superimposition of all signatures of its child

entries. Unfortunately, in this case, the index is not build by grouping together

in the same node feature objects with similar textual description and non-spatial

score, thus it leads to loose bounds. Consequently, similar or relevant objects are

akrivi
Stamp

stored throughout the index, instead of being clustered in the same node, which

hinders efficient pruning.

On the other hand, even though there exist indexes that take the textual de-

scription into account during the index construction, such the IR-Tree [8], these

indexes assume that each keyword of an object is associated with a real value.

Differently, in this report, we follow a Boolean model for the keywords and us-

ing an index such as the IR-Tree would lead to store redundant information. In

contrast, we design a novel indexing method for STPQ queries that captures their

salient characteristics and exploits all aspects, namely the spatial, the non-spatial

score and the textual information of the feature objects.

Indexing based on Hilbert Mapping: Regarding the textual description of fea-

ture objects, let w denote the number of distinct keywords in the vocabulary. Then,

for each feature t the keyword t.W can be represented as a binary vector of length

w. For instance, assuming a vocabulary {pizza, burger, spaghetti}, we can use

an active bit to declare the existence of the “pizza” keyword at the first place,

“burger” at the second, and “spaghetti” at the last. Moreover, we suggest a map-

ping of the binary vector to a Hilbert value, denoted as H(t.W). For the above

w=3 keywords, the defined order is 000,010,011,001,101,111,110 and 100. The

benefit of this order is that it ensures us that vectors with distance 1 have only

one different keyword, while if the distance is w′, then the maximum number of

different keywords is bound by w′. This means that consecutive vectors in the

afore-described order have only few different keywords, which means that ob-

jects with sequential Hilbert values are highly similar also based on the Jaccard

similarity function.

Using the Hilbert mapping of the textual information, each feature object t can

akrivi
Stamp

be represented as a point in the 4-dimensional space {t.x, t.y,t.s,H(t.W)}. Any

spatial index, such as a traditional R-Tree, built on the mapped 4-dimensional

space fulfills the above property and can be used for answering STPQ queries

efficiently. The reason is that this indexing mechanism can identify effectively

the promising branches of the hierarchical structure at a low cost, since during

the index construction the similarity of the spatial location, the non-spatial score

as well as the textual description is taken into account. We call this indexing

technique SRT-index. In terms of structure, the SRT-index resembles a traditional

R-Tree that it is built on the Hilbert value of the keywords, the spatial location and

the non-spatial score of the feature objects altogether. Notably, the exact spatial

index used for indexing the mapped space does not affect the correctness of our

algorithms, but only their performance. In our experimental evaluation, we use

bulk insertion [12] on our novel indexing technique.

We should highlight that an important benefit of the SRT-index is that it also

takes into account the spatial location, which combined with the textual informa-

tion and the non-spatial score, achieves a beneficial grouping of feature objects for

query processing. Even though the dominant factors for computing the score of a

feature objects are its non-spatial score as well as its textual relevance to the given

query, the spatial location is also important for discarding early feature objects

that do not satisfy the spatial constraint of the STPQ query. Thus, if the spatial

location would have been ignored by the index, this would cause an I/O overhead

which is associated with its filtering properties and query selectivity.

To summarize, the SRT-index overcomes the difficulty that other indexing ap-

proaches face, being unable to identify in advance what are the branches of the

index that store highly ranked and relevant feature objects to the query. More im-

akrivi
Stamp

portantly, the search methods proposed in the following sections capitalize on this

specialized indexing scheme to boost the performance of query processing.

1.5 Spatio-Textual Data Scan (STDS)

Our baseline approach, called spatio-textual data scan (STDS), computes the spatio-

textual score τ(p) of each data object p ∈ O and then reports the k data objects

with the highest score. Algorithm 1 shows the pseudocode of STDS. The R-Tree

that indexes the data objects is traversed once and for each object the score τ(p)

is computed. In more detail, for a data object p, its score τi(p) for every fea-

ture set Fi is computed (lines 3-4). The details on this computation for range

queries are described in Algorithm 2 that will be presented in the sequel. In-

terestingly, for some data points p we can avoid computing τi(p) for all feature

sets. This is feasible because we can determine early that some data objects can-

not be in the result set P . To achieve this goal, we define a threshold τ which

is the k-th highest score of any data object processed so far. In addition, we de-

fine an upper bound τ̂(p) for the spatio-textual preference score τ(p) of p, which

does not require knowledge of the preference scores τi(p) for all feature sets Fi:

τ̂(p) =
∑

i∈[1,c]
{
τi(p), if τi(p) is known

1, otherwise
. The algorithm tests the upper bound τ̂

based on the already computed τi(p) against the current threshold (line 4). If τ̂ is

smaller than the current threshold, the remaining score computations are avoided.

After computing the score of p, we test whether it belongs to P (line 5). If this

is case, the result set P is updated (line 6), by adding p to it and removing the

data object with the lowest score (in case that |P | > k). Finally, if at least k data

akrivi
Stamp

objects have already been added to P , we update the threshold based on the k-th

highest score (line 8).

Algorithm 1: Spatio-Textual Data Scan (STDS)
Input: Query Q = (k, r, {Wi})
Output: Result set P = {P [1] . . . P [k]} sorted based on τ(p)

1 P = ∅; τ = −1;
2 foreach p ∈ O do
3 for i = 1 . . . c do
4 if τ̂(p) > τ then τi(p) = Fi.computeScore(Q, p) ;
5 ;

6 if τ(p) > τ then
7 update(P) ;
8 if |P | ≥ k then
9 τ = τ(P [k]) ;

10 return P ;

The remaining challenge is to compute efficiently the score based on the spatio-

textual information of the feature objects. The goal is to reduce the number of disk

accesses for feature objects that are necessary for computing the score of each el-

ement p ∈ O. Algorithm 2 shows the computation of preference score τi(p) for

range queries for feature set Fi. First, the root entry is retrieved and inserted in

a heap (line 1). The heap maintains the entries sorted based on s(e). In each it-

eration (lines 2-11), the entry e with the highest score is processed, following a

best-first approach. If e is a data point and within distance r from p (line 5), then

the score τi(p) of p has been found and is returned (line 7). If e is not a data point,

then we expand it only if it satisfies the query constraints (line 9). More detailed,

if the minimum distance of e to p is smaller or equal to r and its textual similarity

is larger than 0, e is expanded and its child entries are added to the heap (line 11).

Otherwise, the entire sub-tree rooted at e can be safely pruned.

akrivi
Stamp

Algorithm 2: Spatio-Textual Score Computation on Fi

(computeScore(Q, p))
Input: Query Q, data object p
Output: Score τi(p)

1 heap.push(Fi.root);
2 while (not heap.isEmpty()) do
3 e← heap.pop() ;
4 if e is a data object then
5 if (dist(p, e) ≤ r) then
6 τi(p) = s(e) ;
7 return τi(p)

8 else
9 if (mindist(p, e) ≤ r) and (sim(e,Wi) ≥ 0) then

10 for childEntry in e.childNodes do
11 heap.push(childEntry) ;

Correctness and Efficiency: Algorithm 2 always reports the correct score

τi(p). The sorted access of the entries, combined with the property that the score

of the entry is an upper bound, ensures the correctness of Algorithm 2. Moreover,

it can be shown that Algorithm 2 expands the minimum number of entries, in the

sense that if an entry that is expanded by Algorithm 2 was not expanded, it could

lead to computing a wrong score. This is because only entries with score higher

than any processed feature object are expanded, and such entries may contain in

their sub-tree a feature object with score equal to the score of the entry.

Performance improvements: The performance of STDS can be improved by

processing the score computations in a batch. Instead of a single data object p, a

set of data objects P can be given as an input to the Algorithm 2. Then, an entry is

expanded if the distance for at least one p in P is smaller than r. When a feature

object is retrieved, for any p for which the distance is smaller than r the score is

akrivi
Stamp

computed and those data objects p are removed from P . The same procedure is

followed until either the heap or P is empty. Algorithm 1 can be easily modified

to invoke Algorithm 2 for all data objects in the same leaf entry of rtree. For

sake of simplicity, we omit the implementation details, even though we use this

improved modification in our experimental evaluation.

1.6 Spatio-Textual Preference Search (STPS)

The second approach, called Spatio-Textual Preference Search (STPS), follows a

different strategy than the STDS algorithm from Algorithm 1. It first computes

highly ranked and relevant feature objects, and then, retrieves the data objects in

their neighborhood. In a nutshell, the goal here is to find sets of feature objects

C = {t1, t2, . . . , tc} such that ti ∈ Fi, where 1 ≤ i ≤ c, and the score of each

ti is as high as possible. Intuitively, if we find a neighborhood in which highly

ranked feature objects exist, then the neighboring data objects are naturally highly

ranked, as well.

In the general case, a data object may be highly ranked even in the case where

some kind of feature object does not exists in its neighborhood. For example,

consider the extreme case where all data objects have only one type of feature

object in their spatial neighborhood. For ease of presentation, we denote as ∅

a virtual feature object for which it holds that dist(p, ∅) = 0, dist(ti, ∅) = 0

and s(∅) = 0 ∀ti, p. This virtual feature object is used for presenting unified

definitions for the case where the spatio-textual score of the top-k data objects are

defined based on less than c feature objects.

Definition 4 A valid combination of feature objects is a set C = {t1, t2, . . . , tc}

akrivi
Stamp

such that (i) ∀i ti ∈ Fi or ti = ∅ and (ii) dist(ti, tj) ≤ 2r∀i, j. The score of the

valid combination C is defined as s(C) =
∑

1≤i≤c s(ti).

The following lemma proves that it is sufficient to examine only the valid

combinations of feature objects C in order to retrieve the result set of a top-k

spatio-textual preference query.

Lemma 1 The score of any data object p ∈ O is defined by a valid combination

of feature objects C = {t1, t2, . . . , tc}, i.e., ∀p : ∃C = {t1, t2, . . . , tc} such that

τ(p) = s(C)

Proof. Let us assume that there exists p such that: τ(p) =
∑

i∈[1,c] τi(p) with

τi(p) = {s(ti) | ti ∈ Fi : dist(p, ti) ≤ r and sim(ti,Wi) > 0} and C =

{t1, t2, . . . , tc} is not a valid combination of feature objects. Since C = {t1, t2, . . . , tc}

is not a valid combination of feature objects, there exists 1 ≤ i ̸= j ≤ c such that

dist(ti, tj) > 2r but also dist(p, ti) ≤ r and dist(p, tj) ≤ r. Based on the tri-

angular inequality it holds: dist(ti, tj) ≤ dist(p, ti) + dist(p, tj) ≤ r + r ≤ 2r,

which is a contradiction.

1.6.1 STPS Overview

Algorithm 3: Spatio-Textual Preference Search (STPS)
Input: Query Q
Output: Result set P sorted based on τ(p)

1 while (|P | ≤ k) do
2 C = nextCombination(Q) ;
3 P = P∪ getObjects(C) ;

4 return P ;

akrivi
Stamp

Algorithm 3 describes the STPS algorithm. We assume that there exists an

iterator that returns the valid combinations of feature objects sorted based on their

score (we discuss the details on the implementation of the iterator in the following

subsection). Line 2 retrieves the next combination, i.e., the valid combination that

has the highest score of all valid combinations that have not been processed yet.

Thereafter, in line 3, we retrieve all data points in the spatial neighborhood of these

features. Data objects that have already been previously retrieved are discarded,

while the remaining data objects p have a score τ(p) = s(C) and can be returned

to the user incrementally. If at least k data objects have been returned to the user,

the algorithm terminates without retrieving the remaining combinations of feature

objects. Differently to the STDS algorithm, STPS retrieves only the data objects

that certainly belong to the result set.

In line 3 getObjects(C) is called to retrieve from the R-Tree rtree all data

objects in the neighborhood of the feature objects in C. This method starts from

the root of the rtree and processes its entries recursively. Entries e for which ∃i

such that ti ∈ C with dist(e, ti) > r are discarded. The remaining entries are

expanded until all objects p for which it holds ∀i dist(p, ti) ≤ r are retrieved.

Consider for example the feature sets depicted in Figure 1.2 and in Figure 1.3.

Given a query with r = 3.5,W1 = {italian, pizza} andW2 = {espresso, muffins},

the restaurant and the coffeehouse with the highest scores are r6 and c5 respec-

tively. Since it holds that dist(r6, c5) ≤ 2r, the set C = {r6, c5} is a valid

combination of feature objects. Assume that the set of data objects is O =

{p1, p2, . . . , p10} as depicted in Figure 1.5. For the data objects p6, p9 and p10 it

holds that dist(pi, c5) ≤ r and dist(pi, r6) ≤ r, and their spatial-textual score is

τ(p6) = τ(p9) = τ(p10) = 1.6833. These data objects are guaranteed to be the

akrivi
Stamp

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

c5

r6
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

Figure 1.5: Finding the data objects within qualifying distance from C = {r6, c5}.

highest ranked data objects and can be immediately returned to the user. If k ≤ 3,

our algorithm terminates without examining other feature combinations.

The remaining challenge is how to retrieve efficiently the valid combinations

of feature objects C sorted based on their score s(C), which is described in the

following subsection.

Spatio-Textual Feature Objects Retrieval

Algorithm 4 shows our algorithm for retrieving the valid combinations C of feature

objects sorted based on their spatio-textual score s(C). The different spatio-textual

indices that store feature objects of the feature sets Fi are accessed and the feature

objects ti are retrieved based on their score s(ti) that aggregates their non-spatial

score, but also their textual similarity to the query keywords. The retrieved feature

objects are maintained in a list Di and are used to produce valid combinations C

of feature objects. The main property of the spatio-textual index namely that the

score s(e) of an entry e is an upper bound of the score of any feature object t in the

sub-tree pointed by e, enables efficient retrieval of the feature objects ti sorted by

akrivi
Stamp

Algorithm 4: Spatio-Textual Feature Objects Retrieval
(nextCombination(Q))

Input: Query Q
heapi: heap maintaining entries of Fi

heap: heap maintaining valid combinations of feature objects
Di: set of feature objects of Fi

Output: C: valid combination with highest score
1 while (∃i : not heapi.isEmpty()) do
2 i← nextFeatureSet() ;
3 ei ← heapi.pop() ;
4 while (not ei is a data object) do
5 for childEntry in ei.childNodes do
6 heapi.push(childEntry) ;

7 ei ← heapi.pop() ;

8 Di = Di ∪ ei ;
9 heap.push(validCombinations(D1, · · · ,ei ,· · · , Dc)) ;

10 mini = s(ei) ;
11 τ = max1≤j≤c(max1 + · · ·+minj + · · ·+maxc) ;
12 C ← heap.top() ;
13 if (score(C) ≥ τ) then
14 heap.pop() ;
15 return C;

s(ti), since only the entry with the highest score needs to be expanded. The first

feature object that is retrieved is guaranteed to be the next feature object with the

highest score (lines 3-7). The remaining challenge is to find efficiently the valid

combinations C of feature objects with the highest score.

We denote as maxi the maximum score ofDi and mini the minimum score of

Di. Thus, mini represents the best potential score of any feature object of Fi that

has not been processed yet. Moreover, in Alg. 4 the variables heapi, Di, maxi,

mini, and heap are global variables. They are initialized as following heapi: the

root of Fi, Di = ∅ and heap = ∅, mini = ∞. Variable maxi is the score of the

akrivi
Stamp

highest ranked feature object of Fi and is set the first time the Fi index is accessed.

In each iteration Alg. 4 retrieves a feature object ei that belongs to the fea-

ture set Fi (lines 3-7). The entries of the spatio-textual index responsible for the

feature objects of Fi are inserted in heapi, which keeps the entries e sorted based

on s(e). Moreover, for sake of simplicity, we assume that heapi.pop() will return

the virtual feature object ti = ∅ before heapi gets empty. When an entry is re-

trieved that corresponds to a feature object, ei is inserted in the list Di (line 8).

Then, new valid combinations C are created by combining ei with the previously

retrieved feature objects tj maintained in the listsDj (line 9). For this, the method

validCombinations is called, which returns all combinations of the objects inDj

and ei, by discarding combinations for which the condition dist(ti, tj) ≤ 2r ∀i, j

does not hold. The new valid combinations are inserted in the heap (line 9) that

maintains the valid combinations sorted based on their score s(C).

Alg. 4 employs a thresholding scheme to determine if the current best valid

combination can be returned as the valid combination with the highest score. The

threshold τ represents the best score of any valid combination of feature objects

that has not been examined yet. The best score derives by assuming that the next

feature object tj retrieved from Fj has the same score s(tj) with the previously

retrieved feature object of Fj that is equal to minj , Since the feature objects are

accessed sorted based on s(tj) this value is an upper bound. Obviously, for the

remaining feature sets we assume that the new feature object tj is combined with

the feature objects that have the highest score. Thus, τ = max1≤j≤c(max1 +

· · · +minj + · · · +maxc) (line 11) is an upper bound of the score for any valid

combination that has not been examined yet. In line 13, we test whether the

best combination of feature objects in the heap has a score higher or equal to the

akrivi
Stamp

threshold τ . If so, the best combination in the heap is the next valid combination

with the best score.

The order in which the feature objects of different feature sets are retrieved is

defined by a pulling strategy, i.e., nextFeatureSet() returns an integer between

1 and c and defines the pulling strategy. In addition, nextFeatureSet() never

returns i if heapi is empty.

Pulling Strategy: In the following, we proposed an advanced pulling strategy

that prioritize retrieving from feature sets that have higher potential to retrieve the

next valid combination C.

Definition 5 Given c sets of feature objects Di, the prioritized pulling strategy

returns m as the next feature set such that τ = max1+ · · ·+minm+ · · ·+maxc.

The main idea of the prioritized pulling strategy is that in each iteration the

feature set Fm that is responsible for the threshold value τ is accessed. It is obvious

that the only way to reduce τ is to reduce the minm, since retrieving from the

remaining feature sets cannot reduce τ . In addition, retrieving from the remaining

feature sets cannot produce a new valid combination C of feature objects that has

a higher score than τ . Thus, retrieving the next tuple from the feature set Fm can

reduce the threshold τ and may produce new valid combinations that have a score

equal to the current threshold.

1.7 Variants of Top-k Spatio-Textual Preference Queries

In this section, we extend our algorithms for processing spatio-textual preference

queries based on alternative score definitions under a unified framework. We pro-

akrivi
Stamp

vide formal definitions for the alternative score definitions, namely influence pref-

erence score and nearest neighbor preference score. Moreover, we discuss for all

query types the necessary modifications of algorithms for query processing and

certain optimizations. Above all, we address these query types under a general-

ized framework that can be further expanded accordingly at a low programming

cost.

For all variants the STDS algorithm, as defined in Algorithm 1 can be easily

adapted. Only the function computeScore(Q, p) must implemented according to

the definition of each score variant. Thus, in Algorithm 2 each entry in line 11

will be prioritized according to score variant. In addition, the range restriction is

upheld for the minimum distance of the index nodes. No further modifications

are needed, thus in the following we focus on the modifications and optimizations

needed for STPS algorithm.

1.7.1 Influence-Based STPQ Queries

In contrast to the preference score defined in Definition 1 (in the following referred

as range score), in this section we define an alternative score that does not pose a

hard constrain on the distance, but reduces the score based on the distance instead.

We call this score influence score.

Definition 6 The influence preference score τi(p) of data object p based on the

feature set Fi is defined as: τi(p) = max{s(t) · 2
−dist(p,t)

r | t ∈ Fi : sim(t,Wi) >

0}.

The overall spatio-textual score τ(p) of data object p is defined as for the case

of the range score, and the query returns the k objects with the highest score.

akrivi
Stamp

Algorithm 5: STPS for influence score
Input: Query Q
Output: Result set P sorted based on τ(p)

1 τ = 0 ;
2 score = −1 ;
3 while (|P | ≤ k) or (score ¡ τ) do
4 C = nextCombination(Q) ;
5 τ = s(C) ;
6 P = P∪ getObjects(C) ;
7 score = score of k-th element of P ;

8 return P ;

STPQ queries based on the influence preference score can be efficiently

supported by the STPS algorithm with few modifications. Algorithm 5 shows

the modified STPS for influence preference score. The algorithm continues un-

til at least k data object have been retrieved and until we are sure that none

of the remaining data objects can have a better score. In more details, C =

nextCombination(Q) is the same with Algorithm 4 and returns the best com-

bination based on score s(C), but without discarding combinations that have a

distance > 2r. Thus, in each iteration the combination of feature C with the

highest τ(p) =
∑

i∈[1,c] τi(p) is retrieved. Recall that for the case of the range

preference score, all data objects that were located in distance smaller than r from

all feature objects of C had a score equal to s(C). Differently in the case of the in-

fluence prefrence score, the s(C) is an upper bound for the score of all data objects

based on C. Therefore, getObjects(C) must be modified accordingly.

The best score of any unseen combination is τ = s(C), because this is the

score for distance 0. Hence, if the k-th score of the P is smaller than τ , we have

to retrieve additional objects.

akrivi
Stamp

In particular, getObjects() retrieves the k points that have the highest influ-

ence score, by starting a top-k query on the R-Tree of the data objects. The root is

inserted in a heap sorted by the influence score (τ(p) =
∑

i∈[1,c] τi(p)2̇
−dist(p,ti)

r).

For non-leaf entries the influence score is computed based on the mindist. Then

the influence score of an entry is an upper bound of any object in the subtree. Af-

ter retrieving k data objects, we have retrieved the k data object with the highest

influence score for this combination of feature objects. Further improvement can

be done if getObjects() stops retrieving data objects based on τ , which reduces

the I/Os on the R-Tree. If τ is given to getObjects() then it will return at most

k data objects that have a score less than τ . P = P∪ getObjects(C) merges the

results while it removes objects that have been retrieved before. Thus, if an object

that is already in the heap is retrieved again the score with the highest value is

kept. For those feature objects the k data objects with the best τ(p) are retrieved.

The score of the k-th retrieved data object is a threshold. If the s(t) of the next

combination is smaller then the threshold we stop retrieving other combinations.

Towards this end, we suggest a rank-aware approach for processing influence

queries. To elaborate, once the first combination of highly ranked feature objects

is composed, we can easily trace back to the structures that comprise the data

objects the records which achieve distances from the feature objects that are qual-

ified to be added to the result. However, there is a chance for the next combination

of feature objects, even though it is less relevant, to have within closer proximity

data objects in such a way that some of the previously retrieved records are out-

ranked, and therefore, should be replaced. Hence, given that we already have an

answer-set of k items that achieve certain scores and a new combination of feature

objects, we can pre-determine the maximum distances to search for better ranked

akrivi
Stamp

data objects. This consideration will help us reduce disk accesses to the most

essential I/Os. In addition, we need to know when to stop, in other words to rec-

ognize the situation where all remaining combinations of feature objects cannot

be associated with any data object so as to outrank any element of the result-set.

Therefore, it is of the utmost importance for processing influence queries to es-

tablish a rigorous method for accessing only the disk-pages that contain highly

relevant and ranked records. Otherwise, by underestimating this intricate aspect

of the problem we might end up accessing the whole R-Tree several times until

all top-k objects are found.

In the following example we assume that c = 1 and K = 1 for simplicity, but

we will soon generalize for any positive c and K. Let the feature object t1 returned

from the nextCombination() method. Then, the score achieved by any data object

within d1 distance from t1 equals to σ1

2d1
, where σ1 equals to the affine combination

of t1’s ranking and textual similarity with the query for some smooting factor λ.

Also, assume that the data object o1 = argminod(t1, o) achieves the best score w1

when compared to all data objects. Now, for best data object to be combined with

the next best feature object t′1 returned from nextCombination() with σ′
1 ≤ σ1, it

holds to be considered at least as good as the previous combination that σ′
1

2d
′
1
≥ σ1

2d1
.

Otherwise, if there is none such object, we should proceed with the next feature

object. Hence, it follows that,

d′1 ≤ d1 + log
σ′
1

σ1︸ ︷︷ ︸
≤0

(1.1)

akrivi
Stamp

Algorithm 6: Data Objects Retrieval within Feature Objects’ Influence
(getObjects(C, τ, µ, k))

Output: Result set P sorted based on τ(p)
1 heap.push(rtree.rootNode) ;
2 j ← 0;
3 while not heap.isEmpty() or j < k do
4 e← heap.top() ;
5 heap.pop();
6 if e.isLeaf() then
7 if j < µ or (s(e) > τ and j < k) then
8 P ← P ∪ e;
9 j ← j + 1;

10 else
11 break;

12 else
13 for childEntry in e.childNodes do
14 overlaps← true ;
15 forall the 1 ≤ x ≤ |C| do
16 ϕ← 0;
17 forall the 1 ≤ y ≤ |C| do
18 if x ̸= y then
19 w ← Cy.rank + jaccard(Cy.text,Q);
20 ϕ← ϕ+ w

2dist(Cy,childEntry) ;

21 if dx ≥ log2
Cx.rank+jaccard(Cx.text,Q)

τ−ϕ
then

22 overlaps←false;
23 break;

24 if overlaps then
25 heap.push (childEntry);

26 return P ;

Thereby, we manage to transform an influence query to a series of range queries

where the radius is dynamically adapted according to the score of best answer

found so far. In essence, the threshold distance d′1 that is set by the last found

item is further tightened in Eq. 1.1 analogously to the logarithm of the score ratio

akrivi
Stamp

of the feature objects, since the latter score is at most equal to the former. As a

result, only the R-Tree nodes, either internal or leaves, that overlap with the area

designated by a circle with t′1 as its center and radius less than d′1 are accessed

during search. In effect, all branches of the tree that contain data objects that

cannot outrank o1 are pruned.

Moreover, we can follow the same convention for c > 1 to minimize the

disk accesses performed during search. Specifically, let
∑c

i=1
σi

2di
the score of

the best ranked data object and t1, t2, · · · , tc the most influential combination of

feature objects. Again, we can determine an upper bound for the influence radius,

given the previous combination of feature and data objects. Hence, it holds that,∑c
i=1

σ′
i

2d
′
i
≥

∑c
i=1

σi

2di
. Therefore, when examining a data object with respect to

feature object fx, it follows that, σ′
x

2d
′
x
≥

∑c
i=1

σi

2di
−

∑c
j=1
j ̸=x

σ′
i

2d
′
i
, which eventually

leads to,

d′x ≤ log2
σ′
x∑c

i=1
σi

2di
−

∑c
j=1
j ̸=x

σ′
i

2d
′
i

, 1 ≤ x ≤ c (1.2)

In other words, the next retrieved object in order to be as good as the previous, it

should be positioned in the area that corresponds to the intersection of c circles

around the feature objects of the combination and radius given by the formula

above. Hence, when examining the child nodes of an accessed R-Tree node we can

drop it and proceed with the next if even one of its distances from the associated

feature objects does not satisfy Eq. 1.2

Last but not least, Alg. 6 implements getObjects() from Alg. 5 and it addresses

the general case where c ≥ 1 and k ≥ 1. We follow the same procedure, though,

the sum corresponding to the previous influence score in Eq. 1.2 now corresponds

to the score τ of the k-th previously retrieved item. In lines 13–24 we compute for

akrivi
Stamp

each feature object of the combination C the maximum distance from this specific

object that the qualified data objects should keep. In particular, for each new

influential combination we retrieve the top-µ, with µ ≤ k, items until a full set of

k items is formed for all examined combinations. Of course, if there are more than

µ items that outrank the previously retrieved items, then these objects are returned

as well so as to update the answer-set accordingly (Alg. 6, line 7). We can stop

early when the remaining influential combinations have no better preference score

than the influence score of the k-th item in the result.

1.7.2 Implementation of Nearest Neighbor Score for Parame-

terized Query Processing

In the next variant of the range score (Definition 1), each data object takes as a

score the goodness of the feature objects that are its nearest neighbors.

Definition 7 The influnce preference score τi(p) of data object p based on the

feature set Fi is defined as: τi(p) = max{s(t) · 2
−dist(p,t)

r | t ∈ Fi : sim(t,Wi) >

0}.

The overall spatio-textual score τ(p) of data object p is defined as for the case

of the range score, and the query returns the k objects with the highest score.

Again, STDS treats nearest neighbor queries similarly as in Alg. 2 with subtle

changes. The range predicate is upheld in line 10, though the child entries in line

11 are prioritized according to their minimum distance from all data objects.

Regarding STPS, Alg. 3 is directly applicable for the nearest neighbor score

by modifying the C = nextCombination(Q) of Alg. 4 and returns the best

akrivi
Stamp

combination based on score s(), but without discarding combinations that have

a distance > 2r as also in the case of the influence score. Generally, it is more

difficult to retrieve the data objects that have the retrieved combination of feature

objects as their nearest neighbor.

In order to retrieve efficiently the data objects for a combination C, we have to

first determine the area where the data points are located. Then, by enacting the

appropriate query we retrieve them all. For each feature object ti of C, there exists

a region in which all data points that fall into that region ti is their nearest neighbor.

Only the data objects in the intersection of all regions need to be retrieved. In

fact, we compute incrementally the region for each feature object ti of C, which

allows us to discard early combinations for which the intersection becomes empty.

In order to compute this region we have to compare the location of ti with the

other feature objects of Fi. To elaborate, with the following steps we compute the

convex space that is associated with feature object ti with a process that resembles

solutions for finding bichromatic reverse k nearest neighbors. Initially, the whole

keyspace constitutes the influence area of ti. This area is gradually refined and

reduced accordingly.

1. We start by initializing a heap with the root node of the aggregated R-Tree

that corresponds to Fi. The key of each heap element corresponds to the

minimum distance of the associated MBR from ti.

2. At each iteration, we pop the next node from the aggregated R-Tree with

the minimum distance from ti. Now, if the popped node is a leaf containing

feature object pk, then it corresponds to the center of another cell.

3. We compute the parameters of the bisector of the segment between ti and

akrivi
Stamp

pk, where y = αkx+ βk with αk = −
xpk

−xti

ypk−yti
and βk =

yti+ypk
2
−αk

xti+xpk

2
.

4. We compute all bi,j points where the bisectors intersect for all pi, pj pairs

with i < j.

5. We insert into set Vti all bi,js such that dist(bi,j, ti) ≤ dist(bi,j, pk), ∀k, where

pk ̸= pi and pk ̸= pj . The points in Vti bound the area where all comprised

data objects have ti as their nearest neighbor.

6. We keep retrieving ti’s nearest neighbors (which still correspond to the cen-

ters of neighboring Voronoi cells) until the next node’s (either internal or

leaf) minimum distance from ti becomes greater than 2maxi,j dist(ti, bi,j)

(computed in Alg. 7). Hence, beyond this point it can be easily shown by

contradiction that there is no chance for the bisector of the segment between

ti and pk to intersect the already formed influence area of ti, regardless the

angle. All other branches are effectively pruned.

7. We can further optimize this scheme by using the bounded area we com-

puted for the previous feature class and carrying it to the next. If the inter-

section of VFi+1

ti with VFi
ti yields the empty-set ∅ at any point, then we can

stop working on this combination C of feature objects, and proceed with the

next. This way we can further reduce any unnecessary IOs.

In Alg. 7, we compute all intersections of the bisectors that formed between

ti and each of the neighboring cell center, say pi and pj . Now, if for any other cell

center, say pk, the intersection of the bisectors, say bi,j , is closer to pk that ti, then

this means that this particular vertex is not part of the Voronoi cell surrounding

ti. In other words, bi,j is obscured by pk. Thereby, when each intersection is

akrivi
Stamp

Algorithm 7: getMaxVertexDistance (ti, {p1, · · · , pν})
1 forall the pi ∈ {p1, · · · , pν} do
2 forall the pj ∈ {p1, · · · , pi−1} do
3 αi ← −

xpi−xti

ypi−yti
;

4 αj ← −
xpj−xti

ypj−yti
;

5 βi ←
ypi+yti

2
− αi

xpi+xti

2
;

6 βj ←
ypj+yti

2
− αj

xpj+xti

2
;

7 xbi,j ←
βj−βi

αi−αj
;

8 ybi,j ← αixbi,j + βi;
9 tmpDist← dist (ti, bi,j);

10 forall the pk ∈ {p1, · · · , pν} \ {pi, pj} do
11 if tmpDist > dist(pk, bi,j) then
12 obscuredVertexFlg← true;
13 break;

14 if not obscuredVertexFlg and mxDist < tmpDist then
15 mxDist← tmpDist;

16 return mxDist;

obscured by any other, and hence, none non obscured vertex exists then Vti simply

corresponds to the empty-set. Therefore, we know in advance that no data objects

can ever exist to qualify for the examined combination C of feature objects, whose

cells’ interesection we try to compute with
∩

i V
Fi
ti , and thus, no unnecessary effort

should be paid into finding the cells associated with the remaining feature objects,

or reading any disk-page from the R-Tree with the data objects to find out that

no record eventually overlaps with an empty space after all. We also note that

we treat a little differently when pi or pj is on the same axis, either horizontal or

vertical.

Notably, the task of exposing the influence area of each feature object is not a

very difficult task for two dimensions. As a matter of fact, even for real datasets,

akrivi
Stamp

such as the distribution of postal codes in the US, each cell is formed by up to

ten edges most of the times. Next, once we have determined the influence areas

of feature objects t1, t2, · · · , tc, we start traversing recursively the tree hierarchy

where the data objects are stored. More importantly, only the branches of the tree

that overlap will all c influence regions are accessed.

1.8 Experimental Evaluation

In this section, we scrutinize meticulously the performance of STDS and STPS for

processing spatio-textual preference queries over large disk-resident data.

1.8.1 Methodology

The efficiency of all schemes is evaluated according to two distinct metrics: (i) the

required I/Os, which is measured by the average number of disk-pages accessed

(disk accesses) per query, and (ii) the average execution time required by a query

(time consumed in the CPU and to read disk-pages).

Furthermore, our experimental evaluation examines six important parameters.

More specifically, we investigate how the aforementioned metrics scale under six

different scenarios: (i) as the query range r scales between 0.02 and 0.16, (ii)

as the smoothing parameter λ between textual similarity and ranking in search

ranges in (0, 1), (iii) as the number of expected top-k items in a query is varied

from 20 to 640, (iv) as the cardinality of objects’ set |O| varies from 50K tuples

to 1M , (v) as the features’ set cardinality |Fi| also varies from 50K tuples to 1M ,

and (vi) as the number of feature sets c increases. Tested ranges for all parameters

are shown in Table 1.2. The default values are denoted as bold.

akrivi
Stamp

Parameter Range
Query radius (norm. in [0, 1]) .005, .01, .02, .04, .08

Page-size (in bytes) 2048, 4096, 8192, 16384
Result-size 5, 10, 20, 40, 80

Smoothing parameter .1, .3, .5, .7, .9
Queried keywords/Feature class 1, 3, 5, 7, 9

Objects set cardinality 50K, 100K, 500K, 1M
Features set cardinality 50K, 100K, 500K, 1M
Features classes queried 2, 3, 4, 5

Indexed keywords 64, 128, 192, 256

Table 1.2: System parameters.

For evaluating our algorithm, we created real and synthetic datasets, as well.

The real dataset, which was obtained from factual.com, describes hotels and

restaurants. In more details we collected restaurant and hotels that are annotated

by their location. Moreover, for the collected restaurants we extracted their rating

and their textual description of the served food mentioned as cuisine. The possible

values of keywords for the cuisine is around 130 and each restaurant description

may contain one or more keywords. Our datasets contain collected hotels and

restaurants for 13 US states that are the states for which factual.com lists

sufficient enough data. We created synthetic clustered datasets of varying size,

keywords and classes of feature objects. Approximately 10, 000 clusters constitute

each synthetic dataset. The number of distinct keywords is set to 256 and each

feature object is characterized by one or more keywords. When we vary one

parameter, all others are set at their default values. The spatial constituent of all

datasets has been normalized in [0, 1]× [0, 1]. Every reported value is the average

of executing 1, 000 randomly generated queries. The queries are generated in a

similar way as the synthetic data and follow the same data distribution.

akrivi
Stamp

1.8.2 Results

This section presents the results of the experimental evaluation illustrated in Fig-

ures 1.6–1.18 for real and synthetic workloads, where we explore the impact of

several parameters on IO and processing time. Overall, we reckon that there are

profound implications from using alternative approaches for building aggregate

R-Trees. First and foremost, the composite index outperforms the conventional

index that relies on spatial information only.

In Figures 1.6(a) and 1.6(b), for real and synthetic workloads respectively,

where only the query range is varied, we see that the smaller the radius becomes,

the more similarly the two indices behave; for query processing is focused on find-

ing qualified combinations of feature objects, which are quite a few for very small

values of r, and then, select the most relevant ones. Therefore, the index which

is built on the records’ spatial information performs as well as the composite one

for very low and restrictive r-values for being the factor that defines search per-

formance. However, difference in performance becomes obvious when the query

radius restriction is relaxed, greater r-values, and hence, finding relevant tuples in

terms of textual description and good rank becomes most important. As shown

in Fig. 1.6, the advantage of the composite index ameliorates performance a great

deal.

 0

 100

 200

 300

 400

 500

 600

 700

 0.005 0.01 0.02 0.04 0.08

tim
e

(m
se

c)

query radius r

spatial
SRT

(a) real workload

 30

 35

 40

 45

 50

 55

 60

 65

 0.005 0.01 0.02 0.04 0.08

tim
e

(m
se

c)

query radius r

spatial
SRT

(b) synthetic

Figure 1.6: Varied query radius for range queries.

akrivi
Stamp

In Figures 1.7 and 1.11, we get faster response with larger pages evidently, for

real and synthetic workloads respectively. In particular, the time required for IO

diminishes with page-size, whereas the time spent at the CPU increases. More

specifically, larger disk-pages congregate more records, and therefore, more time

is needed to process each disk-page, while the total number of disk-pages that con-

stitute the R-Tree decreases significantly. Particularly in Fig. 1.7(c) we illustrate

with a striped pattern separately the IO and the CPU-time required to compute

the respective Voronoi cells for the nearest neighbor queries. Remarkably, the

cost of finding the ifluence area of a specific combination of feature objects, in

other words computing the intersection of the areas for each retrieved feature ob-

ject relevant to the query with all comprised data objects having as their nearest

neighbors these specific feature objects, is higher than the cost of finding highly

ranked combination of feature objects from the aggregate R-Trees and retrieving

k relevant data objects altogether. Nonetheless, this cost is slightly less singificant

for the conventional index which is built based on the spatial information only, for

records in close proximity are clustered together in consecutive disk-pages, if not

in the same. On the other hand, for the composite index we have similar records

in terms of textual description, rank and location clustered together. Hence, since

computing the influence area of a combination of feature objects takes exclusively

into account spatial information, the composite index exhibits a small overhead,

even though the conventional approach is easily outperformed when total time is

considered. Also, we note that for static data the cells can be pre-computed in a

special structure, and therefore, significantly reduce the total cost.

Overall, execution time increases with result-size k as expected in Figures

1.8 and 1.12, for real and synthetic workloads respectively. Specifically, with

akrivi
Stamp

greater k-values, more combinations of feature objects are constructed to com-

pose a larger answer-set of data objects. In practice, this is translated into multiple

searches for each feature category, until the objects that constitute valid combina-

tions are retrieved.

Regarding the trade-off parameter λ, we observe in Figures 1.9 and 1.13 that

the composite index is in position of taking the most out of either of its con-

stituents, namely rank-based, text-based, or spatial-based. When a query with

λ → 1 is issued, then our composite index takes advantage of the fact that it is

partly build based on records’ textual information. Likewise, for λ→ 0, the infor-

mation which corresponds to the records’ rank is used. On the contrary, the index

that is built conventionally relying exclusively on the records’ spatial information

has no way of knowing a priory which branches of the already accessed R-Tree

nodes are ranked higher. Thereby, all children nodes within the predefined range

are accessed in tandem to be inserted into a priority heap from which the best

combination will be retrieved. Again, score thresholds are used in a branch-and-

bound fashion, even though they are not as effective as with the composite index.

We note for the conventional index that objects with similar textual descriptions

are stored throughout the index, regardless their rank; unlike the composite in-

dex where they are clustered together in consecutive disk-pages. As a result, a

significant overhead is evident when searching for relevant objects all over the

spatial-based index, ranking them, and combining them appropriately. In Figures

1.10 and 1.14 any reasonable number of queried keywords between 3 and 9 has

little impact on performance, if any. However, we note that this would not be the

case if an approach based on inverted files had been approached.

Furthermore, processing time also increases with either the number of indexed

akrivi
Stamp

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280

2 4 8 16

tim
e

(m
se

c)

disk-page size (KB)

spatial
SRT

(a) range queries

 0

 50

 100

 150

 200

 250

 300

 350

 400

2 4 8 16

tim
e

(m
se

c)

disk-page size (KB)

spatial
SRT

(b) influence queries

 0

 100

 200

 300

 400

 500

 600

 700

2 4 8 16

tim
e

(m
se

c)

disk-page size (KB)

spatial
SRT

(c) nearest neighbor

Figure 1.7: Varied page-size for real workload.

 0

 200

 400

 600

 800

 1000

 1200

 5 10 20 40 80

tim
e

(m
se

c)

result size k

spatial
SRT

(a) range queries

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200

 5 10 20 40 80

tim
e

(m
se

c)

result size k

spatial
SRT

(b) influence queries

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

 5 10 20 40 80

tim
e

(m
se

c)

result size k

spatial
SRT

(c) nearest neighbor

Figure 1.8: Varied result-size for real workload.

 115
 120
 125
 130
 135
 140
 145
 150
 155
 160
 165

 0.1 0.3 0.5 0.7 0.9

tim
e

(m
se

c)

smoothing parametel λ

spatial
SRT

(a) range queries

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.1 0.3 0.5 0.7 0.9

tim
e

(m
se

c)

smoothing parametel λ

spatial
SRT

(b) influence queries

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0.1 0.3 0.5 0.7 0.9

tim
e

(m
se

c)

smoothing parametel λ

spatial
SRT

(c) nearest neighbor

Figure 1.9: Varied trade-off for real workload.

 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160
 170

 1 3 5 7 9

tim
e

(m
se

c)

queried keywords

spatial
SRT

(a) range queries

 60

 80

 100

 120

 140

 160

 180

 200

 1 3 5 7 9

tim
e

(m
se

c)

queried keywords

spatial
SRT

(b) influence queries

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 1 3 5 7 9

tim
e

(m
se

c)

queried keywords

spatial
SRT

(c) nearest neighbor

Figure 1.10: Varied number of queried keywords.

feature objects in Fig. 1.15, or the number of indexed data objects in Fig. 1.16, al-

though the former has a stronger impact on performance than the latter. This

akrivi
Stamp

 25

 30

 35

 40

 45

 50

 55

 60

 65

2 4 8 16

tim
e

(m
se

c)

disk-page size (KB)

spatial
SRT

(a) range queries

 40

 50

 60

 70

 80

 90

 100

 110

 120

2 4 8 16

tim
e

(m
se

c)

disk-page size (KB)

spatial
SRT

(b) influence queries

 0

 200

 400

 600

 800

 1000

 1200

 1400

2 4 8 16

tim
e

(m
se

c)

disk-page size (KB)

spatial
SRT

(c) nearest neighbor

Figure 1.11: Varied page-size for synthetic workload.

 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

 5 10 20 40 80

tim
e

(m
se

c)

result size k

spatial
SRT

(a) range queries

 70

 80

 90

 100

 110

 120

 130

 5 10 20 40 80

tim
e

(m
se

c)

result size k

spatial
SRT

(b) influence queries

 300

 400

 500

 600

 700

 800

 900

 1000

 5 10 20 40 80

tim
e

(m
se

c)

result size k

spatial
SRT

(c) nearest neighbor

Figure 1.12: Varied result-size for synthetic workload.

 40

 45

 50

 55

 60

 65

 70

 0.1 0.3 0.5 0.7 0.9

tim
e

(m
se

c)

smoothing parametel λ

spatial
SRT

(a) range queries

 10

 100

 1000

 10000

 0.1 0.3 0.5 0.7 0.9

tim
e

(m
se

c)

smoothing parametel λ

spatial
SRT

(b) influence queries

 300

 400

 500

 600

 700

 800

 900

 1000

 0.1 0.3 0.5 0.7 0.9

tim
e

(m
se

c)

smoothing parametel λ

spatial
SRT

(c) nearest neighbor

Figure 1.13: Varied trade-off for synthetic workload.

 20

 30

 40

 50

 60

 70

 80

 1 3 5 7 9

tim
e

(m
se

c)

queried keywords

spatial
SRT

(a) range queries

 40
 50
 60
 70
 80
 90

 100
 110
 120
 130

 1 3 5 7 9

tim
e

(m
se

c)

queried keywords

spatial
SRT

(b) influence queries

 300

 400

 500

 600

 700

 800

 900

 1 3 5 7 9

tim
e

(m
se

c)

queried keywords

spatial
SRT

(c) nearest neighbor

Figure 1.14: Varied number of queried keywords.

behavior can be easily explained: as the data structures grow bigger, more effort

is required to find the best ranked items and their respective qualified data objects.

akrivi
Stamp

 20

 40

 60

 80

 100

 120

 140

 160

50K 100K 500K 1M

tim
e

(m
se

c)

aggregate dataset size (records)

spatial
SRT

(a) range queries

 50
 60
 70
 80
 90

 100
 110
 120
 130
 140

50K 100K 500K 1M

tim
e

(m
se

c)

aggregate dataset size (records)

spatial
SRT

(b) influence queries

 100

 200

 300

 400

 500

 600

 700

 800

 900

50K 100K 500K 1M

tim
e

(m
se

c)

aggregate dataset size (records)

spatial
SRT

(c) nearest neighbor

Figure 1.15: Varied number of features for synth.

 35

 40

 45

 50

 55

 60

 65

 70

 75

50K 100K 500K 1M

tim
e

(m
se

c)

spatial dataset size (records)

spatial
SRT

(a) range queries

 70

 80

 90

 100

 110

 120

 130

 140

 150

50K 100K 500K 1M

tim
e

(m
se

c)

spatial dataset size (records)

spatial
SRT

(b) influence queries

 300

 400

 500

 600

 700

 800

 900

 1000

50K 100K 500K 1M

tim
e

(m
se

c)

spatial dataset size (records)

spatial
SRT

(c) nearest neighbor

Figure 1.16: Varied number of data objects for synth.

 0

 50

 100

 150

 200

 250

 300

 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(m
se

c)

feature categories c

spatial
SRT

(a) range queries

 50

 100

 150

 200

 250

 300

 350

 400

 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(m
se

c)

feature categories c

spatial
SRT

(b) influence queries

 300

 400

 500

 600

 700

 800

 900

 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e

(m
se

c)

feature categories c

spatial
SRT

(c) nearest neighbor

Figure 1.17: Varied feature categories for synth.

 35

 40

 45

 50

 55

 60

 65

 70

 75

64 128 192 256

tim
e

(m
se

c)

vocabulary cardinality

spatial
SRT

(a) range queries

 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160
 170

64 128 192 256

tim
e

(m
se

c)

vocabulary cardinality

spatial
SRT

(b) influence queries

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

64 128 192 256

tim
e

(m
se

c)

vocabulary cardinality

spatial
SRT

(c) nearest neighbor

Figure 1.18: Varied keywords for synthetic workload.

Surprisingly, performance slightly seems to improve for nearest neighbor queries.

Keep in mind that under this specific setting the computation of the Voronoi cell

akrivi
Stamp

consumes exactly the same resources for it is computed in the same structure

when only the number of data objects is varied. Presumably, with larger datasets

more similar records are clustered together into the same disk-page. Thereby, less

disk-pages are accessed overall since all records comprised by a specific Voronoi

cell are congregated in just a few disk-pages, whereas, for a smaller R-Tree we

access a larger proportion of its leaves. Of course, a few reads is sufficient for

very small datasets. We also note that the size and the shape of the cell also affect

performance. More importantly, the number of feature categories c affects perfor-

mance more dramatically in Fig. 1.17, since the number of possible combinations

of feature objects increases exponentially with c. Intuitively, the efforts and costs

required to retrieve the best ranked combination increase with the number of pos-

sible combinations, which in turn, increases exponentially with c.

In Figure 1.18 we illustrate how performance is affected with respect to the

number of keywords. Apparently, performance is impaired for increased number

of keywords for all query types. However, CPU-time diminishes for range queries

and influence queries since more records fit in each disk-page that have to be pro-

cessed. On the other hand, we observe that both IO and CPU-time grow with

the number of keywords for nearest neighbor queries. With more indexed key-

words we have less records per disk-page and the cost of computing the Voronoi

cell among more disk-pages naturally increases. Remarkably, the computation of

the Voronoi cell is the decisive factor that defines the total time, as performance

deteriorates for nearest neighbor queries with the number of keywords.

Last but not least, we noticed that range and influence queries are costlier for

the real dataset. This is due to the data distribution: our real dataset which was

extracted from factual.com consists of restaurants and hotels in the US form-

akrivi
Stamp

ing just a few clusters. On the other hand, our synthetic dataset is substantially

larger and coined to form 10, 000 cluster approximately. Hence, the data from

the latter dataset are more dispersed compared to the former. Conversely, near-

est neighbor queries are more efficient for the real dataset for the same reason

as the Voronoi cells are formed faster when processing data from just a few very

condensed clusters.

1.9 Conclusions

Recently, the database research community has lavished attention on spatio-textual

queries that retrieve the objects with the highest spatio-textual similarity to a given

query. Differently, in this report, we addressed the problem of ranking data ob-

jects based on the quality of facilities in their spatial neighborhood and their

textual similarity to user-specified keywords. Towards this end, we proposed a

novel query type called top-k spatio-textual preference queries. We developed a

framework for processing many forms of this novel query type. We make use of

spatio-textual indices that are capable of processing efficiently spatial and textual

information simultaneously. Our first approach, called Spatio-Textual Data Scan

(STDS), first retrieves a data object and then computes its score, whereas the latter,

called Spatio-Textual Preference Search (STPS), first retrieves highly ranked fea-

ture objects and then searches for data objects nearby those feature objects. More

importantly, we develop algorithms for processing three forms of top-k spatio-

textual preference queries, namely (i) range queries, (ii) influence queries, and

(iii) nearest neighbor queries. Above all, our framework can be easily extended to

cover complex query types at a low programming cost.

akrivi
Stamp

Furthermore, a salient characteristic of our approach is the alternative tech-

nique used for indexing aggregate data, which is suitable for processing top-k

spatio-textual preference queries, as it ameliorates performance a great deal. Be-

sides, there is a dearth of work on optimizations at the storage layer. Therewith,

search is directed immediately towards the most promising records, in an effort

to reduce I/Os and avoid accessing irrelevant disk-pages. We emphasize on the

fact that hitherto approaches ignore the textual constituent of data, and thus, cause

a significant I/O overhead. Finally, in our experimental evaluation, we put all

methods under scrutiny to verify the efficiency and the scalability of our methods,

partly by exposing the deficiencies of conventional approaches inept for process-

ing top-k spatio-textual preference queries.

akrivi
Stamp

Chapter 2

Tag Recommendations

Flickr is one of the largest online image collections, where shared photos are typ-

ically annotated with tags. The tagging process bridges the gap between visual

content and keyword search by providing a meaningful textual description of the

tagged object. However, the task of tagging is cumbersome, therefore tag recom-

mendation is commonly used to suggest relevant tags to the user and enrich the

semantic description of the photo. Apart from textual tagging based on keywords,

an increasing trend of geotagging has been recently observed, as witnessed by the

increased number of geotagged photos in Flickr. Geotagging refers to attaching

location-specific information to photos, namely about the location where a photo

was captured. Even though there exist different methods for tag recommendation

of photos, the gain of using spatial and textual information in order to recommend

more meaningful tags to users has not been studied yet. In this report, we analyze

the properties of geotagged photos of Flickr, and propose novel location-aware tag

recommendation methods. For evaluation purposes, we have implemented a pro-

totype system and exploit it to present examples that demonstrate the effectiveness

akrivi
Stamp

of our proposed methods.

2.1 Introduction

Flickr allows users to upload photos, annotate the photos with tags,view photos

uploaded by other users, comment on photos, create special interest groups etc.

Currently, Flickr stores one of the largest online image collections with more than

8 billion photos (March 20131) from more than 87 million users and more than 3.5

million new images uploaded daily. The tags are important for users to retrieve

relevant photos among the huge amount of existing photos. Since multimedia data

provide no textual information about their content, tags bridge the gap between

visual content and keyword search by providing a meaningful description of the

object. Thus, to make their photos searchable, users are willing to annotate their

uploaded images with tags [2]. Nevertheless, tags reflect the perspective of the

user that annotates the photo and therefore different users may use different tags

for the same photo. This can be verified by the fact that photos of Flickr that depict

the same subject may be described by a variety of tags. Tag recommendation [20]

is commonly used to provide to the user relevant tags and enrich the semantic

description of the photo.

Flickr motivates its users to geotag their uploaded photos2. Geotagging means

to attach to a photo the location where it was taken. Photos taken by GPS-enabled

cameras and mobile phones are geotagged automatically and location metadata,

such as latitude and longitude, are automatically associated with the photos. Flickr

1http://www.theverge.com/2013/3/20/4121574/flickr-chief-markus-spiering-talks-photos-
and-marissa-mayer

2http://www.flickr.com/groups/geotagging/

akrivi
Stamp

Figure 2.1: Example of geotagged photos on a map in Flickr.

is able to read the spatial information (latitude and longitude) during the upload

and place the photos on a map, as depicted in Figure 2.1. Furthermore, photos may

be also geotagged manually by the user when the photo is uploaded. Currently,

there is an increasing trend in the number of geotagged photos in Flickr.

Even though several recent studies [8, 5] examine how relevant web objects

can be retrieved based on both the spatial and textual information, the gain of using

spatial information in order to recommend more meaningful tags to users has

not been studied yet. Nevertheless, it is expected that nearby photos may depict

similar objects, thus sharing common tags with higher probability. In this report,

we propose methods for tag recommendations based on both location and tag co-

occurrence of the photos. In details, this report makes the following contributions:

• We create different data collections of geo-tagged photos of Flickr that are

located in different cities and analyze their properties in terms of tag fre-

quency, number of tags per photos and the type of tags commonly chosen

by users. This study allows us to analyze the behavior of the users related to

tagging and draw some important conclusions for our tag recommendation

akrivi
Stamp

methods.

• We introduce novel tag recommendation methods that take into account also

the location of the given photo as well as the location of the existing pho-

tos. The key idea of our methods is that not only the similarity in terms of

existing tags is important, but also the distance between the existing photos

in which the tags appear.

• We implemented a prototype system for location-aware tag recommenda-

tions over photos of Flickr and evaluate experimentally our proposed method

through examples that demonstrates the effectiveness of location-aware tag

recommendation.

The remainder of the report is structured as follows. In Section 2.2 we de-

scribe our data collections and analyze their properties. Then, Section 2.3 presents

an overview of the location-aware tag recommendations system and describes the

proposed location-aware tag recommendation methods. In Section 2.4 we evalu-

ate our proposed methods. Finally, in Section 2.5 we discuss related work and in

Section 2.6 we provide some concluding remarks.

2.2 Data Collection

In this section we describe our data collections and provide statistics about the

photo tags. In order to design our recommendation strategies it is important to first

study the relevance and quality of the tags. What kind of tags are used for tagging

is also important in order to understand which tags are useful for recommendations

and how the tags relate to the location of the photo.

akrivi
Stamp

(a) New York (b) Rome (c) London

Figure 2.2: Tag frequency distribution

(a) New York (b) Rome (c) London

Figure 2.3: Number of tags per photo

We have created three different data collections. Each of them contains 100.000

geotagged photos that are located in New York, Rome and London respectively.

Table 2.1 summarizes the number of tags that appear in each collection and the

number of unique tags per collection. The collected photos are a random snapshot

of the geotagged photos located in the aforementioned cities. For each city the

boundary is defined by the bounding box provided at http://www.flickr.

com/places/info/. The photos were collected between December 2012 and

February 2013 and each photo has at least one tag describing it.

Collection Tags Unique tags
New York 1.502.454 80.180
Rome 897.185 41.843
London 1.428.047 110.231

Table 2.1: General characteristics per collection.

akrivi
Stamp

2.2.1 Distribution of Tag Frequency

Our data collection of photos collected from Flickr located in New York contains

100.000 photos, with 1.502.454 tags in total, while the unique tags are 80.180.

The photo collection of Rome has 897.185 tags in total and the unique tags are

41.843. Finally, the data collection of London has 1.428.047 tags in total and the

unique tags are 110.231.

Figure 2.2 shows the distribution of the tag frequency on a log-log scale. The

x-axis represent the set of unique tags order based on the frequency in descending

order. The y-axis is the tag frequency. We observe that the tag frequency can be

modeled by a power law for all data collections.

Tag Freq.
NYC 47940
New York 45809
NY City 33941
manhattan 27282
NY 26717
USA 15957
City 14637
New 10952
Brooklyn 10741
2012 10126

Table 2.2: New York.

Tag Freq.
rome 56660
italy 44842
roma 44225
italia 19281
Lazio 8883
2012 8374
Europe 7534
Rom 6917
square 6851
iphoneography 6464

Table 2.3: Rome.

Tag Freq.
London 68250
UK 30839
England 25760
2012 12459
kenjonbro 11693
trafalgar square 11090
United Kingdom 10023
Westminster 8404
fuji hs10 7981
SW1 7282

Table 2.4: London.

Tables 2.2- 2.4 show the 10 most popular tags for New York, Rome and Lon-

don respectively. For the New York collection there exist 41.230 tags with tag

frequency 1, which are the less popular. To give an example of their relevance we

report 10 random of them: walmart, resort, people mover, kristin, bougainvillea,

pixie, aviso, World Heritage Site, Beggar, ox. Similarly, for Rome there exists

20.197 tags with frequency 1, while for London there are 59.559 tags with fre-

quency 1.

By observing the distribution of the tags in the each collection, but also by

akrivi
Stamp

looking at the most popular tags, it is obvious that the most popular tags should

be excluded by our recommendation method because these tags are too generic

to be helpful for recommendation. Recall that the popular tags include tags such

as: NYC, New York, Rome, Italy, London, UK. Similar, the less popular tags

with very small frequency (i.e., equal to 1) should be also excluded by our recom-

mendation method, since these tags include words that are misspelled, complex

phrases and very specific tags. For example consider the tags: drwho, loo, boring,

SF, #noon, dv. Due to their low frequency it is expected that those tags can be

useful only in very specific cases and thus are not suitable for recommending to

other photos.

2.2.2 Distribution of Number of Tags per Photo

In Figure 2.3 the number of tags per photo are depicted. More precisely, the

percentage of photos that have 1, 2, 3, 4, 5, 6, >6 tags for each data collection

are depicted. In addition, we consider (Figure 2.4) also the distribution of the

number of tags per photo for New York. Figure 2.4 is in log-log scale and the

x-axis represents the set of photos ordered based on the number of tags per photo

(descending order), while the y-axis refers to the number of tags of each photo.

We notice that a high percentage of photos, i.e, approximate 20%, has a high

number of tags (more than 6 tags) and there even exist photos with more than 50

tags. Similar results have been also obtained for the other two data collections.

Thus, some photos have a very high number of tags, so that these tags cannot

be considered to be representative for the photo. Therefore, our recommendation

methods will not use such photos. Moreover, approximately 50% of the photos

akrivi
Stamp

Figure 2.4: Number of tags per photo for New York.

have only one tag, and again these photos can not be used for tag recommendation

that relies on co-occurrence of tags. On the other hand, the fact that a high per-

centage of photos have only one tag motivates the need for tag recommendation,

since all these photos would benefit by a more detailed description.

Figure 2.5: Tags per WordNet category for New York.

2.2.3 Analysis based on WordNet

Finally, we analyze what and how users tag by categorizing the tags based on

WordNet. We use the broad categories of WordNet and if there exist multiple

categories for one tag, this tag is associated with the category of the highest rank.

Figure 2.5 presents the distribution of tags for New York based on the most popu-

akrivi
Stamp

lar categories of WordNet. Following this approach, approximate 20% of the tags

can be categorized based on WordNet, leaving 80% of the tags without any cate-

gory. We depict also in higher details the categorization of the 20% of the tags. By

taking into account only the tags that can be categorized, the most frequent cat-

egories are ”person or groups” (appr. 20%) and ”artifact or object” (appr. 20%),

followed by ”action or event” (appr. 8%), ”location” (appr. 5%), and ”time” (appr.

2%). The category ”Other” (appr. 45%) contains the tags that belong to some cat-

egory of WordNet, but do not belong to any of the aforementioned categories. We

can conclude that the users tag photos not only based on their features, but also

based on the information the photo depicts, such as the time taken or the event

and the location that is depicted. Similar results hold also for London and Rome

data collection.

Figure 2.6: Location tag frequency distribution (New York)

Since in this report location tags are important, we analyze in more details

the location based tags. For the New York data collection it holds that from all

unique tags only 777 refer to a location based on WordNet. For the Rome data

collection only 411 tags are tags referring to a location based on WordNet, while

for London there exist 877 unique location tags. Figure 2.6 depicts the frequency

akrivi
Stamp

of the location based tags in log-log scale for New York data collection. The

x-axis represents the set of unique location tags order based on the frequency

in descending order. The y-axis is the tag frequency. We observe that the tag

frequency can be modeled by a power law and this holds also for the other data

collections.

Tag Freq.
New York 45809
New York City 33941
manhattan 27282
NY 26717
USA 15957
City 14637
Brooklyn 10741
United States 6788
america 4853
park 3842

Table 2.5: New York.

Tag Freq.
rome 56660
italy 44842
italia 19281
Lazio 8883
Vatican City 3067
city 2433
Latium 2002
Piazza 1781
town 604
Umbria 401

Table 2.6: Rome.

Tag Freq.
London 68250
UK 30839
England 25760
trafalgar square 11090
United Kingdom 10023
Westminster 8404
City 5332
Great Britain 4303
Britain 3870
surrey 2196

Table 2.7: London.

Tables 2.5-2.7 show the 10 most popular location-based tags for New York,

Rome and London respectively. There exist 227 tags with location-based tag fre-

quency 1 for the New York collection. To give an example of their relevance we

declare 10 random of them (for the New York collection): vienna, Nepal, Ohio,

Bali, Calgary, praia, oslo, Cali, Rio de Janeiro, liverpool, St. Petersburg. Similar

for Rome and London there exists 130 and 235 tags with frequency 1. Due to the

small number of tags that can be categorized as location tags based on WordNet,

but also due their relatively low frequency (i.e., Table 2.6) it is not possible to

enhance our recommendation method using the WordNet categories.

2.3 Recommendation Methods

In this section we describe our recommendation methods. The input of our meth-

ods is a photo p that is described by a location given by the owner of the photo

akrivi
Stamp

and a set of tags {t1, t2, . . . }. The goal is to recommend to the use a set of relevant

tags {t′1, t′2, . . . } that could augment the description of p. Our methods rely on tag

co-occurrence, i.e., the identification of tags frequently used together to annotate

a photo. Furthermore, we enhance tag recommendation by taking explicitly into

account the location of photos, in order to derive more meaningful co-occurring

tags.

2.3.1 System Overview

Figure 2.7 gives a crisp overview of our location-aware tag recommendation sys-

tem. Our system is built on an existing collection of photos that are geotagged,

such as a subset of geotagged photos provided by Flickr. This information is

necessary in order to identify frequently occurring tags, as well as to discover

keywords that are used together as tags in many photos.

Figure 2.7: System overview.

We adopt a two-phase approach: in the first phase, a set of frequently co-

occurring tags is discovered for each input tag {t1, t2, . . . }, while in the second

phase, these sets of tags are combined to produce the final tag recommendation. In

more details, for each given tag ti a ranked list of n relevant tags to ti is retrieved

akrivi
Stamp

based on the tag co-occurrence and the distance between the given photo and

the photos in which the tags co-occur. Each tag is associated with a score that

expresses its relevance to given tag ti. Then, in the second phase, the different

lists of relevant tags are combined, by aggregating their partial scores, so that the

k most relevant tags are recommended to the user.

Even though different aggregation functions are applicable, we employ a plain

strategy of summing the partial scores. Thus, for each tag t′i, the overall score is

defined as the sum of its scores in the ranked lists. Our goal is to produce more

qualitative recommendations, by taking into account the location of the photo as

well as the location of the existing tags.

2.3.2 Tag Recommendation Methods

We employ three different tag recommendation methods: (a) simple tag co-occurrence,

(b) range tag co-occurrence, and (c) influence tag co-occurrence. The first method

is location-independent and is used as a baseline, while the other two are novel,

location-aware methods for tag recommendation.

Simple Tag Co-occurrence Method (Baseline)

The simplest way to measure the relevance of an existing tag to a given tag is tag

co-occurrence. Assuming that ti is the given tag and tj an existing tag, then we

denote Pi (or Pj) the sets of photos in which tag ti (or tj) appear. To compute

the co-occurrence of tags ti and tj , we need a metric for set similarity. One com-

monly used metric to express the similarity based on co-occurrence is the Jaccard

coefficient, which is defined as the size of the intersection of the two sets divided

akrivi
Stamp

by the size of their union. Thus, for tags ti and tj , the Jaccard similarity is defined

as:

Jaccard(ti, tj) =
|Pi ∩ Pj|
|Pi ∪ Pj|

.

Range Tag Co-occurrence Method

One major shortcoming of the simple tag co-occurrence method is that it does not

take into account the location of the photo. Intuitively, it is expected that photos

that are taken at nearby locations will share common tags, while photos taken far

away from each other are less probable to be described by they same tags. This

intuition guides the design of both location-aware methods that we propose. Given

a radius r and a geo-tagged photo p, we define asR(p) the set of photos in our data

collection that have a distance smaller than r to the location of the given photo p.

In other words, photos in the setR(p) have been geo-tagged with a location that is

within distance r from the location of the input photo p. Then, we define a novel

measure that combines tag co-occurrence with location information:

Range(ti, tj) =
|Pi ∩ Pj ∩R(p)|
|Pi ∪ Pj|

.

In this way, for tag co-occurrence, we take into account only the pairs of photos

in which both tags appear and are geo-tagged withing a distance r. On the other

hand, we divide with the total number of photos in which at least one of the tags

appears, thus giving a penalty to tags that appear very often in photos that are

distant to each other (i.e., outside the range r).

akrivi
Stamp

Influence Tag Co-occurrence Method

One drawback of range tag co-occurrence method is that a radius r needs to be

defined as input, and it is not always straightforward how to set an appropriate

value, without knowing the distribution of the locations of existing photos. More-

over, the defined range enforces a binary decision to whether a photo will be

included or not in the tag co-occurrence computation, based on its distance being

above or below the value r. For example, a very small value of radius may result

in no photos with the given tag being located into the range, while on the other

hand a large radius may result in most (or all) of the photos being located inside

the range. Summarizing, the recommended tags are quite sensitive to the value of

the radius, which is also hard to define appropriately.

To alleviate this drawback, we propose also a more robust and stable method

than the plain range tag co-occurrence method. Given a radius r and a geo-tagged

photo p, we define the influence score of two tags ti and tj as:

inflscore(ti, tj) =
∑

p′∈Pi∩Pj

2
−d(p′,p)

r

, where d(p′, p) is the distance between the locations of p and p′. Then the rele-

vance of a given tag ti and an existing tag tj is computed as:

Influence(ti, tj) =
inflscore(ti, tj)

|Pi ∪ Pj|
.

The key idea behind the influence score is that tags that co-occur in nearby photos

have a higher influence than tags that co-occur in distant photos. This is nicely

captured in the above definition by the exponent, which gradually decreases the

akrivi
Stamp

contribution of any photo p′ the further it is located from p. Compared to the

range tag co-occurrence method, this method does not enforce a binary decision

on whether a photo will contribute or not to the score. Also, even though a radius

r still needs to be defined, this practically has a smoothing effect on the influence

score (rather than eliminating some photos), thus the score is not very sensitive to

the value of r.

2.4 Experimental Evaluation

2.4.1 Prototype System

In order to evaluate experimentally our proposed recommendation methods we

implemented a prototype system. Our prototype system displays to the user a

map by using Google maps and the user can upload a new photo by providing its

location (latitude and longitude). Then, in order to use the tag recommendation

methods the user is asked to give the radius of interest as well as some initial tags.

The recommendation query is posed and the systems displays on the map to the

user the location of the new photo, the photos that participate in the recommen-

dation query as well as the recommended tags(Figure 2.8(a)). The user can as

depicted in Figure 2.8(b).

In our example, the new photo is uploaded at the location of the Metropolitan

Museum of Art in New York (latitude:40.7789 and longitude:−73.9637) and one

tag is given by the user namely ’The Metropolitan Museum of Art’. The user

decides to use the Influence Recommendation Method and sets the radius to 200

and requests the 3 best matching tags. The recommendation tags are: ’The Met’,

akrivi
Stamp

(a) Recommendation Example (b) Photos used for Recommenda-
tion

Figure 2.8: Example of prototype system.

’Greek and Roman art’ and ’Manhattan’.

2.4.2 Experimental Evaluation

In this section, we provide examples of the proposed recommendation methods

of Section 2.3. To this end, we take into account also the conclusions drawn

in Section 2.2. Therefore, to avoid tags that are too generic to be helpful for

recommendation, we exclude from the recommendation tags that appear in more

than 10% of the photos. Also, we remove from our photo collection photos that

have more than 30 tags, as these tags cannot be considered to be representative

for the photo. Moreover, photos that have only one tag cannot be used for tag

recommendation that rely on co-occurrence of tags, therefore such photos are also

removed from the photo collections.

In order to measure the distance between two photos, we convert the longitude

and latitude of each photo to the Universal Transverse Mercator (UTM) projected

coordinate system. Then, we apply the Euclidean distance in this transformed

space.

In our first example we use the New York data collection. Assuming a user

akrivi
Stamp

Figure 2.9: Example of recommendation.

that uploads to Flickr a photo taken at the Battery Park (40.703294,−74.017411)

in the Lower Manhattan of New York. The user gives one tag to the photo namely

”New York Harbor”. Figure 2.9 shows our prototype system for this query. The

recommendation results are shown in Table 2.8. In this example we study how

the radius influences our two approaches, while the Baseline fails to recommend

relevant tags (”Newtown Creek”, ”Maspeth, New York” and ”DUGABO”). We

notice that Range is more sensitive to the radius than Influence. Table 2.8 shows

also the number of photos that fall into the region of radius r. This explains the

behavior of Range, as for small radius values there exist too few photos to make

meaningful recommendations.

Our next example uses again the New York data collection and this time a new

photo is located nearby Time Square and the query point location is 40.756116,

−73.986409. The given tag by the user is ”Broadway”. The results are depicted

in Table 2.9. In this example, we notice that even for small radius the Influence

method manage to retrieve relevant tags, while Range fails for small radius due to

the low number of existing photos. On the other hand, both Range and Influence

manage to retrieve relevant tags for higher radius values, while Baseline returns

akrivi
Stamp

more general tags like ”Madison Ave”.

In the following example we use the Rome data collection. We assume that

the given photo is located in Vatican City (query location: 41.903491,12.453214)

and it is annotated with the tag ”Museum” and the results are shown in Table 2.10.

We notice that for small values of radius Range fails to return relevant tags due to

the low number of existing photos. On the other hand Influence is influenced by

very co-occurred tags like ”painting” even for higher radius values, because these

two tags appear at many photos together and even if the distance is larger their

score is aggregated and alters the final result.

In the next example (Table 2.11) we study the case of a photo that is annotated

by 2 tags before the tag recommendation. We use the Rome data collection and

we assume that the photo is taken at Piazza della Rotonda in front of Pantheon

(41.899134, 12.47681). We set the radius equal to 100 since in the historical cen-

ter of Rome there are many nearby photos. Location-aware tag recommendation

manages to give relevant tags also for generic terms like ”Piazza”. For ”Piazza”

and ”pantheon” query, the Baseline returns the same results as ”Piazza” because

there is a higher co-occurrence between this tag and the others, while for the

location-aware approaches the results are the same as ”pantheon” because there

are more photos with this tag nearby the given location.

Finally, we examine another example in which 2 tags are given (”Bucking-

ham Palace” and ”park”). This time we use the London data collection and the

photo is located on the Birdcage Walk in front of the St. James’s Park (51.501011,

−0.133268). The radius is set to 500 and the results are depicted in Table 2.12.

This example tries to illustrate a hard case, as one of the tags (i.e, ”Buckingham

Palace”) is not directly related to the location and the other tag (i.e., ”park”) is

akrivi
Stamp

quite generic. We notice that Range fails to return ”St. James’s Park” as a recom-

mended tag, which is probably the most related term based on the location, but

still both Range and Influence manage to recommend more relevant tags than the

baseline.

2.5 Related Work

Automatic tag recommendation in social networks has emerged as an interesting

research topic recently [21]. Especially in the case of Flickr, tag recommendation

has been studied in [20, 11]. In more details, [20] presents different tag recom-

mendation strategies relying on relationships between tags defined by the global

co-occurrence metrics. On the other hand, in [11] tag recommendation methods

are studied that are personalized and use knowledge about the particular user’s

tagging behavior in the past. Nevertheless, none of the above methods takes into

account the locations of photos. SpiritTagger [16] is a geo-aware tag suggestion

tool for photos, but the proposed approach relies on the visual content (such as

global color, texture, edge features) of the photo and on the global and local tag

distribution. In contrast, our approach takes into account the tag co-occurrence

and the distance between the given and the existing photos.

An overview of the field of recommender systems can be found in [1]. A

framework that decouples the definition of a recommendation process from its

execution and supports flexible recommendations over structured data has been

proposed in [13, 14]. Neighborhood-based tag recommendation is studied in [4].

The neighborhood is defined based on a graph and tags are propagated through

existing edges.

akrivi
Stamp

In [19] the authors also focus on geo-tagged photos and propose methods for

placing photos uploaded to Flickr on the World map. These methods rely on the

textual annotations provided by the users and predict the single location where the

image was taken. This work is motivated by the fact that users spend considerable

effort to describe photos [2, 20] with tags and these tags relate to locations where

they were taken.

2.6 Conclusions

Tag recommendation is a very important and challenging task, since it helps users

to annotate their photos with more meaningful tags, which in turn enables retriev-

ing relevant photos from large photos collections such as Flickr. Nowadays, more

and more photos are geotagged, and therefore in this report we investigate how

to improve tag recommendation based on the spatial and textual information of

the photos. To this end, we analyzed the tags of geotagged photos collected from

Flickr and proposed two different location-aware tag recommendation methods.

Our experiments show that location-aware tag recommendation is promising and

the location of a photo improves the quality of the recommendation. In the future,

we aim to investigate in depth how different existing recommendation methods

can be improved by combining them with the photo locations.

akrivi
Stamp

Radius Photos Range Influence
500 1098 Frederic Bartholdi, nite, One New York Plaza, Statue of Liberty,

lens adapters Harbor
1000 3828 One New York Plaza, Harbor One New York Plaza, Statue of Liberty,

Statue of Liberty Harbor
1500 6117 One New York Plaza, Harbor, Liberty Island, Statue of Liberty,

Statue of Liberty Harbor
2000 8816 Harbor, One New York Plaza, Liberty Island, Staten Island Ferry,

Statue of Liberty Statue of Liberty

Table 2.8: New York Harbor (Baseline recommends: ”Newtown Creek”,
”Maspeth, New York”, ”DUGABO”).

Baseline Range Influence
100 1000 100 1000

1 peeps Times Square Times Square Times Square Times Square
2 Hood nikkor 24-70mm f2.8 theatre lights theatre
3 Madison Ave Silver Efex Pro2 Theater District Theater District Theater District
4 Lexington Ave lights Musical neon Musical

Table 2.9: Broadway.
Radius Photos Range Influence

100 219 Musei Vaticani, heritage, painting, Musei Vaticani,
DMC-GF1 Vatican Museum

500 11486 Musei Vaticani, Vaticano, Musei Vaticani, painting,
Vatican Vaticano

1000 14450 Musei Vaticani, Vaticano, museo, painting, Musei Vaticani,
Vatican Vaticano

1500 17914 Musei Vaticani, Vaticano, museo, Musei Vaticani,
Vatican Vaticano

Table 2.10: Museum (Baseline recommends: ”museo”, ”Musei Vaticani”,
”sculpture”).

akrivi
Stamp

Query Baseline Range Influence
Piazza Navona, pantheon, pantheon,

spagna, Rotonda, Navona,
popolo della Rotonda

pantheon colosseum, Piazza della Rotonda, Piazza della Rotonda,
piazza di spagna, temple, temple,
Piazza della Rotonda Dome Dome

Piazza Navona, Piazza della Rotonda, Piazza della Rotonda,
and pantheon spagna, temple, temple,

popolo Dome Dome

Table 2.11: Rome at Piazza della Rotonda (radius=100).

Baseline Range Influence
1 hyde roadrace the mall
2 Green Park Piccadilly London Green Park
3 the mall Road Race Cycling st james park’
4 Constitution Hill the mall Piccadilly London

Table 2.12: ”Buckingham Palace” and ”park”.

akrivi
Stamp

Bibliography

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of rec-

ommender systems: A survey of the state-of-the-art and possible exten-

sions. IEEE Transactions on Knowledge and Data Engineering (TKDE),

17(6):734–749, 2005.

[2] M. Ames and M. Naaman. Why we tag: motivations for annotation in mobile

and online media. In Proceedings of ACM Conference on Human Factors in

Computing Systems (CHI), pages 971–980, 2007.

[3] P. Bouros, S. Ge, and N. Mamoulis. Spatio-textual similarity joins. PVLDB,

6(1):1–12, 2012.

[4] A. Budura, S. Michel, P. Cudré-Mauroux, and K. Aberer. Neighborhood-

based tag prediction. In Proceedings of Extended Semantic Web Conference

(ESWC), pages 608–622, 2009.

[5] X. Cao, G. Cong, B. Cui, C. S. Jensen, and Q. Yuan. Approaches to exploring

category information for question retrieval in community question-answer

archives. ACM Transactions on Information Systems, 30(2):7, 2012.

akrivi
Stamp

[6] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based relevant

spatial web objects. PVLDB, 3(1):373–384, 2010.

[7] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial keyword

querying. In Proc. of the Int. Conf. on Management of Data (SIGMOD),

pages 373–384, 2011.

[8] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most

relevant spatial web objects. PVLDB, 2(1):337–348, 2009.

[9] Y. Du, D. Zhang, and T. Xia. The Optimal-Location query. In Proc. of the

Int. Symposium on Spatial and Temporal Databases (SSTD), pages 163–180,

2005.

[10] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases.

In Proc. of Int. Conf. on Data Engineering (ICDE), pages 656–665, 2008.

[11] N. Garg and I. Weber. Personalized, interactive tag recommendation for

flickr. In Proceedings of ACM Recommender System Conference (RecSys),

pages 67–74, 2008.

[12] I. Kamel and C. Faloutsos. Hilbert r-tree: An improved r-tree using fractals.

In Proc. of the Int. Conf. on Very Large Data Bases (VLDB), pages 500–509,

1994.

[13] G. Koutrika, B. Bercovitz, and H. Garcia-Molina. Flexrecs: expressing and

combining flexible recommendations. In Proceedings of ACM International

Conference on Management of Data (SIGMOD), pages 745–758, 2009.

akrivi
Stamp

[14] G. Koutrika, B. Bercovitz, R. Ikeda, F. Kaliszan, H. Liou, and H. Garcia-

Molina. Flexible recommendations for course planning. In Proceedings of

International Conference on Data Engineering (ICDE), pages 1467–1470,

2009.

[15] Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. L. Lee, and X. Wang. Ir-tree:

An efficient index for geographic document search. IEEE Transactions on

Knowledge and Data Engineering (TKDE), 23(4):585–599, 2011.

[16] E. Moxley, J. Kleban, and B. S. Manjunath. Spirittagger: a geo-aware tag

suggestion tool mined from flickr. In Proceedings of Multimedia Information

Retrieval, pages 24–30, 2008.

[17] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nørvåg. Efficient

processing of top-k spatial keyword queries. In Proc. of the Int. Symposium

on Spatial and Temporal Databases (SSTD), pages 205–222, 2011.

[18] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and K. Nørvåg. Efficient

processing of top-k spatial preference queries. PVLDB, 4(2):93–104, 2010.

[19] P. Serdyukov, V. Murdock, and R. van Zwol. Placing flickr photos on a

map. In Proceedings of International ACM Conference on Research and

Development in Information Retrieval (SIGIR), pages 484–491, 2009.

[20] B. Sigurbjörnsson and R. van Zwol. Flickr tag recommendation based on

collective knowledge. In Proceedings of International World Wide Web Con-

ference (WWW), pages 327–336, 2008.

akrivi
Stamp

[21] Y. Song, L. Zhang, and C. L. Giles. Automatic tag recommendation al-

gorithms for social recommender systems. ACM Transactions on the Web

(TWEB), 5(1):4, 2011.

[22] T. Xia, D. Zhang, E. Kanoulas, and Y. Du. On computing top-t most influen-

tial spatial sites. In Proc. of the Int. Conf. on Very Large Data Bases (VLDB),

pages 946–957, 2005.

[23] M. L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis. Top-k spatial preference

queries. In Proc. of Int. Conf. on Data Engineering (ICDE), pages 1076–

1085, 2007.

[24] M. L. Yiu, H. Lu, N. Mamoulis, and M. Vaitis. Ranking spatial data by qual-

ity preferences. IEEE Transactions on Knowledge and Data Engineering

(TKDE), 23(3):433–446, 2011.

[25] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsuregawa.

Keyword search in spatial databases: Towards searching by document. In

Proc. of Int. Conf. on Data Engineering (ICDE), pages 688–699, 2009.

akrivi
Stamp

