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Abstract. We report on recent work concerning groups of homological dimension one and
detail some methods that may be used in order to determine whether these groups are locally
free.

0. Introduction

Stallings has established in [20] a characterization of finitely generated free groups, as those
groups whose cohomological dimension is one. It is very easy to show that a free group has
cohomological dimension one. Indeed, if G is a free group then the augmentation ideal IG is
a free ZG-module; in fact, if G is freely generated by a subset S, then IG is a free ZG-module
on the set {s− 1 : s ∈ S}. The essence of Stallings’ theorem is that the converse implication
is also true, namely that any finitely generated group of cohomological dimension one is free.
Bieri asked in [2] whether a (stronger) homological version of the latter result holds:

Is any finitely generated group of homological dimension one free?

Shortly after the publication of the proof of Stallings’ theorem, Swan showed that the finite
generation hypothesis is redundant therein, by proving that a (not necessarily finitely gener-
ated) group G is free if and only if cdG = 1 (cf. [21]). In that direction, we note that Bieri’s
question may be equivalently formulated as follows:

Is any group of homological dimension one locally free?

Some interesting results concerning that problem have been obtained in [5] and [11], by em-
bedding the integral group ring ZG of the group G into the associated von Neumann algebra
NG and the algebra UG of unbounded operators which are affiliated to NG.
We note that a group G is known to be finitely generated if and only if the augmentation

ideal IG is a finitely generated ZG-module, whereas G has homological dimension one if and
only if IG is a flat ZG-module. In view of the above mentioned result of Stallings and Swan,
the freeness of G is equivalent to the projectivity of IG as a ZG-module. Therefore, Bieri’s
question turns out to be equivalent to the following one:

If the augmentation ideal IG is a finitely generated flat ZG-module,
then is it true that IG is a projective ZG-module?

If G is any countable group, then the augmentation ideal IG is countably presented as a ZG-
module. It follows from a result of Lazard [12] that, in this case, the flatness of IG implies
that its projective dimension is ≤ 1 (and hence that cdG ≤ 2). The point is to show that if
we strengthen the assumption on the group G and assume that it is finitely generated (and
not just countable), then the flatness of IG implies its projectivity. In this direction, we note
that if G is the additive group of rational numbers, then the ZG-module IG is flat but not
projective (i.e. hdG = 1 but cdG = 2); even though this countable group has homological
dimension one, it isn’t free.
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In the present note, we shall follow [6] and elaborate on two methods that may be used in
order to study this problem.

1. Projectivity of finitely generated flat modules

Let G be a group and consider the augmentation ideal IG. As mentioned in the Introduction,
we wish to prove that the ZG-module IG is projective, provided that we know it to be finitely
generated and flat. We are only interested in the very particular ZG-module IG, but it may
be the case that our group G is such that any finitely generated flat ZG-module is projective.
Even though it seems that we make the problem unnecessarily harder1, we introduce the
following class of groups:

Definition 1.1. Let S be the class consisting of those groups G, which are such that any
finitely generated flat ZG-module is projective.

We shall begin by listing a couple of elementary properties of this class:

(i) S contains all finite groups.
Proof. If G is a finite group, then the group ring ZG is (left) Noetherian and hence any
finitely generated ZG-module is finitely presented. In particular, any finitely generated flat
ZG-module is (finitely presented and flat and hence) projective. �

(ii) S is subgroup-closed.
Proof. Let H be a subgroup of a group G ∈ S. In order to show that H ∈ S, let M be a
finitely generated flat ZH-module. Then, indG

HM is a finitely generated flat ZG-module and
hence, in view of the hypothesis made on G, it is ZG-projective. Therefore, the ZH-module
resGH ind

G
HM is projective. Since M is a direct summand of resGH ind

G
HM , it follows that M is a

projective ZH-module as well. �

(iii) Any S-group of homological dimension one is locally free.
Proof. Let H be a finitely generated subgroup of an S-group G. Since G has homological
dimension one, it follows that H has homological dimension one as well; hence, the augmen-
tation ideal IH is a finitely generated flat ZH-module. Since the class S is subgroup-closed
(cf. (ii) above), the group H is contained in S and hence the ZH-module IH is projective.
Invoking Stallings’ theorem, we conclude that H is a free group, as needed. �

Remark 1.2. The class of those rings R over which any finitely generated flat left module is
projective has been studied in [8] and [18]. It is shown therein that this property is equivalent
to the ascending chain condition on certain sequences of principal left ideals in matrix rings
over R. In particular, it turns out that a group G is an S-group if and only if for any n ≥ 1
and any sequence of n×n matrices (Ai)i ∈ Mn(ZG) with AiAi+1 = Ai for all i, the ascending
sequence of principal left ideals

Mn(ZG)A0 ⊆ Mn(ZG)A1 ⊆ . . . ⊆ Mn(ZG)At ⊆ · · ·
of the matrix ring Mn(ZG) is eventually constant.

The embedding of the integral group ring ZG of a group G into the associated von Neumann
algebra NG enables one to define the von Neumann dimension dimNG(NG ⊗ZG P ) ∈ R for

1See Remark 1.8(ii) below.
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any finitely generated projective ZG-module P . The reader may consult Lück’s book [14] for
the details of the definition and several useful properties of this dimension theory.
For any group G we let ΛG be the additive subgroup of Q, which is generated by the inverses

of the orders of the finite subgroups of G. The group G is said to satisfy Atiyah’s conjecture
if dimNG(NG⊗ZG P ) ∈ ΛG for any finitely generated projective ZG-module P . Lück’s book
contains a thorough discussion of this conjecture and presents several classes of groups for
which the conjecture is known to be true.

Definition 1.3. Let Afin be the class consisting of those groups that satisfy Atiyah’s conjecture
and have a finite upper bound on the orders of their finite subgroups.

The relevance of Atiyah’s conjecture in the study of groups of homological dimension one
was noticed by Kropholler, Linnell and Lück in [11]: In order to describe the link between
the two themes, let us consider a finitely generated group G and fix a presentation of it as
the quotient of a finitely generated free group Γ by a normal subgroup N . Then, as shown by
Magnus in [16], the associated relation module P = N/[N,N ] fits into a short exact sequence
of ZG-modules

(1) 0 −→ P −→ F −→ IG −→ 0,

where F is a finitely generated free ZG-module (of rank equal to the rank of the free group Γ);
see also [3, Chapter II, Proposition 5.4]. If the group G has homological dimension one, then
the augmentation ideal IG is flat as a ZG-module. Invoking [12, Théorème I.3.2], we conclude
that IG has projective dimension ≤ 1 and hence P is a projective ZG-module. Then, since
the (finitely generated flat) ZG-module IG is projective if and only if it is finitely presented,
in order to prove the conjectured freeness of the group G, we are reduced to showing that the
relation module P is finitely generated.
It is well known that if we are dealing with vector spaces over a field, then any subspace of

a finitely generated vector space V is also finitely generated, i.e. there is no strictly increasing
sequence of subspaces of V . One may prove this property using the fact that the dimension
of any such a subspace is bounded by the dimension of V and hence the dimensions of these
subspaces may assume only finitely many values. In the same way, one may attempt to prove
that the ZG-module P in the exact sequence (1) above is finitely generated, using the formal
properties of the von Neumann dimension (namely, its monotonicity and continuity). There
is a problem though with this approach: The von Neumann dimension is a real number (not
necessarily an integer) and a bounded set of real numbers need not be discrete. Atiyah’s con-
jecture for groups with a finite upper bound on the orders of their finite subgroups guarantees
that the set of the von Neumann dimensions that are involved is indeed discrete, making the
classical linear algebra argument outlined above work.
In fact, we may state the following result, which is essentially due to Kropholler, Linnell

and Lück (cf. [11]).

Theorem 1.4. The class Afin is a subclass of S.
Proof. Let G be a group contained in Afin. In order to show that G is anS-group, it suffices,

in view of [8, Proposition 3.5], to show that any finitely generated and countably presented flat
ZG-module is projective. To that end, let M be a finitely generated and countably presented
flat ZG-module. Being countably presented and flat, the module M has projective dimension
≤ 1 (cf. [12, Théorème I.3.2]) and hence the arguments used in the proof of [11, Lemma 4,
Lemma 5 and Theorem 2] show that M is finitely presented and therefore projective. �
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For any ideal I of a ring R we define the ideal Iω =
∩∞

n=1 I
n. We also consider the ideals Iω

m
,

m ≥ 1, which are defined inductively by letting Iω
1
= Iω and Iω

m
=
(
Iω

m−1
)
ω for all m > 1.

We say that the ideal I is residually nilpotent if Iω = 0.

Definition 1.5. For all m ≥ 1 let Xm be the class consisting of those groups G whose aug-
mentation ideal IG is such that Iω

m

G = 0. We also let X =
∪∞

m=1Xm.

The class X1, which contains those groups whose augmentation ideal is residually nilpotent,
has been studied extensively (cf. [17]). As shown by Lichtman in [13], X1 contains as a subclass
the class

Y1 = {residually torsion-free nilpotent groups}.
In particular, X1 contains all free groups (cf. [15, §I.10]) and all torsion-free abelian groups.
As shown in [6, Proposition 5.2], the class X is closed under subgroups and extensions.2 It
follows that X contains as a subclass the class

Y = {iterated extensions of residually torsion-free nilpotent groups}.
The relevance of class X in the study of S-groups (and therefore in the study of groups of

homological dimension one) stems from the following lifting result, which is itself proved in
[6, Proposition 5.3(ii)].

Theorem 1.6. Let G be a group and N ⊆ G a normal subgroup. If N ∈ X and G/N ∈ S,
then G ∈ S. �
In particular, the trivial group being an S-group, it follows that X ⊆ S.

Corollary 1.7. Let G be a group having a normal subgroup N ⊆ G, such that:
(i) N is an iterated extension of residually torsion-free nilpotent groups and
(ii) G/N satisfies Atiyah’s conjecture and has a finite upper bound on the orders of its finite

subgroups.
Then, G ∈ S. In particular, if G has homological dimension one, then G is locally free.
Proof. Since N ∈ Y ⊆ X and G/N ∈ Afin ⊆ S (cf. Theorem 1.4), the result is an immediate

consequence of Theorem 1.6. �

Remarks 1.8. (i) (cf. [6, Theorem 5.5]) If O is any class of groups, let us denote by O♢ the
class consisting of the finitely generated O-groups of homological dimension one. For example,
if we denote by F the class of free groups, then F♢ is the class consisting of the free groups of
finite rank. With this notation, the chains of inclusions

F ⊆ Y1 ⊆ X1 ⊆ X ⊆ S and F ⊆ Y1 ⊆ Y ⊆ X ⊆ S

induce equalities

F♢ = Y♢1 = X♢1 = X♢ = S♢ and F♢ = Y♢1 = Y♢ = X♢ = S♢.

Indeed, as we have noted above, a finitely generated S-group of homological dimension one
is necessarily free.
(ii) Let G be a finitely generated group of homological dimension one, so that the augmen-

tation ideal IG is a finitely generated flat ZG-module. If that particular module (namely IG)
is projective, then all finitely generated flat ZG-modules are projective, i.e. G is an S-group.

2In fact, the class Xm is subgroup-closed for all m, whereas if N is a normal subgroup of a group G, such
that N ∈ Xm and G/N ∈ Xm′ , then G ∈ Xm+m′ .
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Indeed, the projectivity of IG implies, in view of Stallings’ theorem, that the group G is free
and hence the inclusion F ⊆ S (cf. (i) above) shows that G ∈ S.
(iii) It is known that Y1-groups admit a left order. If G is a left orderable group of homolog-

ical dimension one, then, as shown by Dicks and Linnell in [5, Corollary 6.12], any 2-generated
subgroup of G is free. It follows from (i) above that the same result holds for any finitely
generated subgroup of a Y1-group of homological dimension one.

2. The cohomology group H2(G,ZG)

The relation between flatness and projectivity is a classical theme in homological algebra.
There is a variety of conditions which, when imposed on a flat module, imply its projectivity.
In this direction, it is worth mentioning a result due to Raynaud and Gruson. Even though
they were mainly interested in modules over commutative rings (and, more generally, quasi-
coherent sheaves on schemes), they established in [19] a criterion for a countably presented flat
left moduleK over a not necessarily commutative ring R to be projective. As shown by Lazard
[12, §I.3], such a module K can be expressed as the direct limit of a direct system (Kn)n of
finitely generated free left R-modules. With this notation, Raynaud and Gruson proved that
K is projective if and only if the inverse system of abelian groups (HomR(Kn, R))n satisfies
the Mittag-Leffler condition. The corresponding notion of Mittag-Leffler modules has been
studied thoroughly and systematically in [1]. On the other hand, Gray has obtained in [9] a
characterization of the Mittag-Leffler condition for inverse systems of countable abelian groups
in terms of the vanishing of lim

←−
1, the first derived functor of the inverse limit functor. Using

this circle of ideas and the classical expression of the Ext-groups of K in terms of the Ext-
groups of the Kn’s, Jensen has obtained in [10] a simple projectivity test for a flat module,
that we shall describe below (see also [6, Theorem 1.3]).
To that end, assume that R is a countable ring and consider a countable left R-module K.

Then, Jensen’s criterion asserts thatK is projective if and only ifK is flat and Ext1R(K,R) = 0.
A stronger version of that result was obtained in [7, Theorem 2.22], where it is shown that

K is projective ⇐⇒ pdRK ≤ 1 and Ext1R(K,R) = 0.

Let us now consider a non-zero countable left R-module M of finite projective dimension.
Then, the functors ExtiR(M, ) vanish identically for i ≫ 0. In particular, ExtiR(M,R) = 0 for
i ≫ 0. Applying the result above to a suitable kernel in a countably generated free resolution
of M (namely, to the (n− 1)th kernel, where n = pdRM), we obtain the equality

(2) pdRM = max{i ≥ 0 : ExtiR(M,R) ̸= 0}.

The latter equality is of some interest, as it shows that any countable module of finite projective
dimension over a countable ring demonstrates a cohomological behavior reminiscent of the FP -
condition. Indeed, if R is any ring and M any non-zero left R-module with pdRM = n < ∞,
then the functor ExtnR(M, ) does not vanish identically, whereas ExtiR(M, ) = 0 for all i > n.
In fact, if P∗ −→ M −→ 0 is a projective resolution of M of length n, then it is easily seen
that ExtnR(M,Pn) ̸= 0. Since Pn is a direct summand of a free left R-module F , it follows that
we also have ExtnR(M,F ) ̸= 0. The free module F is, in general, of infinite rank. In order to
obtain some information on the minimal size of such an F , we note that:
(i) If κ is an infinite cardinal, such that any left ideal of R is generated by a set of cardinality

κ and M is κ-generated, then one may choose Pn to be κ-generated. Therefore, it follows that
ExtnR

(
M,R(κ)

)
̸= 0.
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(ii) In particular, if the ring R is left ℵ0-Noetherian (i.e. if any left ideal of R is countably
generated) and M is countably generated, then ExtnR

(
M,R(N)

)
̸= 0.

(iii) If R is any ring and M is an FP -module, then Pn (and hence the free module F ) may
be chosen to be finitely generated; therefore, in this case, we have ExtnR(M,R) ̸= 0.
The essence of equality (2) is that, if R is a countable ring and M a countable left R-module
of projective dimension n, then we may choose the free module F for which ExtnR(M,F ) ̸= 0
to be the left regular module R. In other words, the non-triviality of the group ExtnR

(
M,R(N)

)
(which itself results from the fact that the pair (R,M) satisfies the hypotheses in (ii) above)
may be strengthened to the conclusion that ExtnR(M,R) ̸= 0 (which is generically a conse-
quence of the finiteness condition in (iii) above).
We now consider the special case where R = ZG is the integral group ring of a countable

group G and M = Z (with the trivial action of G). Assuming that G has finite cohomological
dimension, we obtain from (2) the equality

cdG = max{i ≥ 0 : H i(G,ZG) ̸= 0}.
If the countable group G has homological dimension one, then we have cdG ≤ 2 and hence it
follows that, in this case,

cdG = 1 ⇐⇒ H2(G,ZG) = 0.

The latter equivalence may be strengthened, as stated in the next result, which is proved in
[6, Theorem 3.1].

Theorem 2.1. Let G be a countable group of homological dimension one. Then, the following
conditions are equivalent:
(i) cdG = 1 (i.e. G is free),
(ii) H2(G,ZG) = 0,
(iii) H2(G,ZG) is a countable group. �

Corollary 2.2. (cf. [6, Proposition 3.2]) Let G be a finitely generated group of homological
dimension one, which contains a non-trivial finitely generated free group as a normal subgroup.
Then, G is a free group.
Proof (sketch). If 1 ̸= N ⊆ G is a normal subgroup, which is finitely generated and free,

then one may use the associated Lyndon-Hochschild-Serre spectral sequence in order to obtain
an isomorphism of abelian groups H2(G,ZG) ≃ H1(G/N,H1(N,ZG)). Since both groups N
and G/N are finitely generated and ZG is countable, the abelian group H1(G/N,H1(N,ZG))
turns out to be countable as well. The freeness of G then follows invoking Theorem 2.1. �

As an application of the result above, we can show that any group of homological dimension one
must necessarily share certain properties with locally free groups. In order to state explicitly
these properties, let us consider a group G of homological dimension one. Then, as shown in
[6, §3], the following hold:
(i) For any non-trivial finitely generated and free subgroup H ⊆ G the normalizer NG(H)

of H is locally free and the quotient group NG(H)/H is locally finite.
(ii) If H ⊆ G is an infinite cyclic subgroup, then the normalizer NG(H) coincides with the

centralizer CG(H) and is locally infinite cyclic.
(iii) If G is non-abelian, then the center of G is trivial.3

3This result may be alternatively proved using the structure of groups of cohomological dimension ≤ 2; for
such a proof, the reader may consult Cornick’s unpublished notes [4].
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