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There are many different three-dimensional (3D) techniques to capture and deliver autostereoscopic 3D
content. A promising technique that provides two-dimensional parallax as well as high-quality, full-
color 3D content is integral imaging (InI). Misalignments between the lens arrays (LAs) and the camera
charged coupled device, however, introduce geometric distortions in the acquired image that propagate
through the different image processing stages and deteriorate the 3D effect. Here, we propose a method
to accurately rectify the perspective distortion of integral images (InIms) generated using circular
lenses. Using an edge-linking approach, we extracted elliptically shaped contours of elemental images
in the perspectively distorted InIm. To calculate the rectification matrix, we used the images of the
circular points. Subsequently, we applied a triangulation scheme followed by a statistical approach
to accurately estimate the grid structure of the LA. Finally, we provided experimental results over
a wide range of InIms to evaluate the robustness and accuracy of the proposed method using objective
metrics. © 2013 Optical Society of America
OCIS codes: (080.0080) Geometric optics; (100.6890) Three-dimensional image processing;

(100.5010) Pattern recognition; (110.2990) Image formation theory; (110.3010) Image reconstruction
techniques.
http://dx.doi.org/10.1364/AO.52.004959

1. Introduction

Integral photography (IP) was introduced by the
Nobel Laureate Lippman [1] in 1908. Now, integral
imaging (InI) is based on the concept of IP and is con-
sidered one of the most successful techniques to ac-
quire and display three-dimensional (3D) images and
video [2]. InI makes possible the delivery of accu-
rately detailed, full-color 3D content with support
for multiple simultaneous users.

Figure 1(a) shows the basic InI acquisition setup,
which consists of a charged coupled device (CCD) and
a lens array (LA) [3,4]. Figure 1(b) shows the display
setup, which consists of a liquid crystal display
(LCD) and a LA.

When placing an appropriate LA between the CCD
and the scene, each of the lenses comprising the LA
forms an elemental image (EI) on the CCD sensor,
which is a partial micrography of the acquired scene.
The acquired set of EIs forms an integral image
(InIm), which can be used to reproduce the 3D scene
using an LCD and appropriate Las, as already
described.

LAs currently used in existing InI setups are cat-
egorized according to the shape of the used lenses.
Lenses can have different regular shapes, and Fig. 2
depicts several such LAs containing circular, square,
hexagonal, and triangular lenses.

In this work, we address the issue of perspective
rectification of InIms acquired using LAs with circu-
lar lenses, which are widely used in existing setups.
In addition, circular LAs are easier to manufacture
and offer better optical properties because of their
intrinsic spherical shape. Thus, a number of already

1559-128X/13/204959-10$15.00/0
© 2013 Optical Society of America

10 July 2013 / Vol. 52, No. 20 / APPLIED OPTICS 4959

http://dx.doi.org/10.1364/AO.52.004959


existing applications like microscopy [5] could
benefit from an automated method to detect mis-
alignments when using LAs with circular lenses.

In detail, the most important concern during the
acquisition procedure should be the accurate align-
ment between the CCD and LA planes. Due to mis-
alignment between the two planes, perspective
distortion may be introduced, which damages the
shapes and causes variability in the size of the ac-
quired EIs.

Therefore, EIs are perspectively distorted into el-
lipses in the case of circular lenses and irregular pol-
ygons in the case of square, hexagonal, or triangular
lenses. The result is poor 3D representation through
an InI display, deformation of the 3D object recon-
structed after using the procedure described in [6]
or a distorted, single-view 2D subimage after apply-
ing the method described in [7]. Furthermore, the
majority of InIm coding algorithms convert InIms

in EI sequences and require accurate knowledge of
the proper geometry of the InIm structure [8].
Clearly, a rectification process is required to alleviate
these geometric aberrations. Figure 3 illustrates the
effect of perspective distortion on the InIm acquired
using a LA with circular lenses.

Since perspective distortion cannot be easily
avoided without significant integration costs, various
software methods have been proposed to eliminate
this distortion. Until now, these methods worked
with InI setups containing square, hexagonal, or tri-
angular lenses and used an edge detector to extract
line segments of the acquired InIm. Length and an-
gle measurements on these segments are used as
input to the metric rectification procedure of [9] to
calculate the perspective rectification parameters.

A method for the rectification of square lens InIms
is presented in [10]. This method uses the Hough
transform to detect a rectangle of the distorted EI
grid, which is subsequently used to estimate the rec-
tification parameters. An alternative rectification
approach for square LA InIms is proposed in [11]
and offers a robust grid estimation method with
strong statistical support for line segments over the
entire InIm. The method proposed in [12] is a gener-
alization of [11] for the case of hexagonal LAs.

The above frameworks consist of a preprocessing
stage to accurately determine the underlying image
structures (EI borders), a method to calculate a set of
parameters that will be used in the rectification proc-
ess matrices and the application of the rectification
matrices on the distorted image. However, such ap-
proaches fail to deal accurately with LAs consisting
of circular lenses as they use straight line-fitting
techniques to approximate EI borders.

Here, we propose a methodology that retains the
final optimized process for applying the rectification
matrices and provides a robust method that uses the

Fig. 1. (a) InI acquisition and (b) InI display setup.

Fig. 2. Various LAs consisting of (a) circular, (b) square, and (c) hexagonal and triangular lenses.
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unique properties of circular lenses to perform the
preprocessing step. We also developed and applied
an analytically derived methodology to map the re-
sulting elliptical shapes to parameters required to
calculate the rectification matrices.

Our paper and its key components are arranged as
follows:

• Section 2 presents the necessary mathematical
background of this work. More analytically, in Sec-
tion 2.A, we describe the parameters of the required
planar rectification matrices.
• Section 2.B shows how these parameters can be

calculated when the only available information is el-
liptical contours instead of line segments as in the
case of LAs with circular lenses.
• Section 2.C provides a method to fit ellipses to

points, which is necessary to estimate analytic equa-
tions of ellipses contained in an acquired InIm.
• Section 3 explains how we applied these

mathematical principles in a real-world scenario.
Sections 3.A and 3.B estimate the ellipse equations
of EI contours in a distorted InIm. In Section 3.C we
used these ellipses to calculate the rectification
matrices using a statistical approach.
• Section 4 contains the evaluation methodology

as well as the experimental setup. In Section 4.A, we
describe the experimental InIm datasets and the
pickup process, while Sections 4.B and 4.C contain
the description of the geometric consistency metrics
as well as the evaluation of the images in the exper-
imental InIm datasets.
• Section 5 summarizes the most important out-

comes and contributions of our work. Explicit math-
ematical details and proofs related to the equations
of Section 2.B are provided in Appendix A.

2. Mathematical Background

A. Perspective Rectification Matrices

As described in [9,10], and [11], a point P of a per-
spectively distorted plane is mapped to its corre-
sponding point P0 on the rectified (geometrically
corrected) plane using

x⃗0 � Hx⃗; (1)

where x⃗, x⃗0 are 3-vectors representing the homo-
geneous coordinates of P, P0, and H is the 3 × 3
real-valued perspective rectification matrix. Fur-
thermore, the perspective transformation H can be
written as the product of three 3 × 3 real-valued
matrices according to the equation:

H � HsHaHp: (2)

Matrices Hp, Ha, Hs represent a pure perspective,
an affine, and a similarity transformation, respec-
tively, and are given by:

Hp �
0
@ 1 0 0

0 1 0
l1 l2 l3

1
A; (3)

Ha �

0
B@

1
β −

α
β 0

0 1 0

0 0 1

1
CA; (4)

Hs �
0
@ R

x0
y0

0 0 1

1
A
0
B@
c 0 0

0 c 0

0 0 1

1
CA; (5)

and

R �
�

cos θ sin θ
− sin θ cos θ

�
; (6)

where l1, l2, l3 are the parameters defining the dis-
torted plane’s vanishing line [9], α, β are the metric
correction parameters, and Hs results in rotation by
R, translation by �x0; y0�T and scaling by c.

To rectify a perspectively distorted plane, we calcu-
lated the required parameters for Hp, Ha, Hs. The
application of Hp, Ha, Hs for rectification purposes
is used regardless of the EI geometries contained in-
side the InIm plane [13]. However, based on the EI
geometries, different approaches are followed to de-
rive these matrices. In the case of EIs with circular
geometries, the distorted InIm plane contains
coplanar ellipses corresponding to circles on the

Fig. 3. (a) Undistorted coplanar circular EIs, (b) perspectively
distorted EIs, (c) a conventional photograph of a 3D dice, (d) ac-
quired InIm of the dice without distortion, and (e) perspectively
distorted acquired InIm. The borders in (d) and (e) are shown
for illustration purposes.

Fig. 4. (a) Set of coplanar ellipses corresponding to perspectively
distorted circles, (b) the affine plane of ellipses resulting after
applying Hp, (c) the metric-corrected ellipses transformed to
circles after applying Ha, and (d) the final and correctly rotated
and scaled set of coplanar circles after applying the similarity
transformation Hs.
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undistorted plane, as shown in Fig. 3(b). The sequen-
tial application of the matrices Hp, Ha, Hs shown in
Fig. 4 demonstrates the stages recovering the geo-
metric properties of perspectively distorted plane
consisting of ellipses.

B. Rectification Using the Images of the Circular Points

We calculate the parameters that compose Hp, Ha,
Hs to perform planar rectification. In square, hexago-
nal, and other lens geometries detected straight line
segments are used to produce lines that are finally
used for parameter estimation [9].

However in our case, straight lines are unavail-
able. Perspective distortion in InIms acquired from
LAs with circular lenses makes the acquired EIs
have an elliptical contour. In this case, line detection
methods are of no use due to the complete lack of
straight edges between the EIs.

To this end, we followed an approach based on the
acquired ellipses of the plane to calculate the required
rectification parameters. The central part of all
ellipse-based rectification methods is the estimation
of the images of the circular points (ICPs) [14,15].

In the proposed framework, we used the approach
of ICPs to to extract the parameters l1, l2, l3, α, β to
perform metric rectification on the acquired InIm.

The circular points (CPs), which lie on the undis-
torted plane, are the two complex conjugate 3-vectors
�1;�i; 0�T [13] and are located at infinity on the van-
ishing line. Furthermore, it is easy to notice that they
verify the generic homogeneous equation of a circle
with radius r and center �m;n; 1�:

�X −mZ�2 � �Y − nZ�2 � r2Z2: (7)

This means that any possible pair of circles in the
undistorted plane verifies these points. Additionally,
the matrix form of a generic conic C is given by:

C �

0
BB@

a b∕2 d∕2
b∕2 c e∕2
d∕2 e∕2 f

1
CCA: (8)

According to [13], the conic C is mapped under a per-
spective transformation H to a corresponding conic
C0 using the equation:

H−TCH−1 � C0: (9)

Figure 5 shows that under the perspective distortion
H−1, circles are mapped to ellipses and the two con-
jugate CPs are mapped to two conjugate ICPs that
have the form [15]:

ICPs � �αl3 ∓ il3β; l3;−l2 − l1α� il1β�T: (10)

From Eq. (10), we notice that ICPs involve all
required rectification parameters contained in trans-
formation matrices Hp, Ha.

ICPs are estimated by finding the complex solu-
tions verifying a pair of ellipses on the distorted
plane. The analytic equation of a 2D ellipse is

ax2 � bxy� cy2 � dx� ey� f � 0; (11)

therefore, two ellipses form the system:

�
a1x2 � b1xy� c1y2 � d1x� e1y� f 1 � 0
a2x2 � b2xy� c2y2 � d2x� e2y� f 2 � 0

: �12�

A method for solving this quadratic system has
been proposed in [14]. In our case, two ellipses do
not visually intersect on the acquired image
plane; therefore, the four solutions �xs; ys� contain
only complex coordinates. These come in two
conjugate pairs:

� �xs0; ys0�; �xs0; ys0�
�xs1; ys1�; �xs1; ys1� : �13�

Correctly selecting the two ICPs from the previous
four solutions relies on the fact that the ICPs verify
the equation of every ellipse. Solving two or more
pairs of ellipses makes ICPs estimation a matter
of locating the shared solutions, or in the case of
noise, the closest ones in terms of proximity on the
complex xy-plane [14].

After we identify the ICPs by solving systems of
ellipse pairs, their estimated values are ICP1 �
�xc; yc� and ICP2 � �xc; yc�. Since the ICPs lie on
the plane’s vanishing line I � �l1; l2; l3�T, the param-
eters l1, l2, l3 are calculated as the cross product of
the two ICP homogeneous vectors [15]:

�l1; l2; l3�T � �xc; yc; 1�T � �xc; yc; 1�T: (14)

The metric rectification parameters α, β are sub-
sequently given by:

8<
:
α � Real

�
−l2xc

l3�l1xc

�
� Real

�
l3�l2yc
−l1yc

�

β �
���Imag

�
−l2xc

l3�l1xc

���� �
���Imag

�
l3�l2yc
−l1yc

���� : �15�

Fig. 5. (a) Any pair of coplanar circles verifies the CPs shown in
(b) under the perspective distortion H−1, the pair of ellipses in
(c) corresponding to the circles in (a) verifies the ICPs shown in (d).
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An analytic proof of the previous equation as well
as the detailed transformation of the CPs using the
perspective distortion matrix H−1 is given in
Appendix A.

C. Ellipse Parameter Fitting

Estimating the analytic parameters of ellipses in the
acquired distorted plane is the first important step
toward rectification. Therefore, we propose a method
of fitting ellipses to lists of contiguous 2D points us-
ing the approach that follows.

Let S � f�xi; yi�g, i � 1…M a sequence of M dis-
crete image points belonging to a single elliptically
shaped contour. We will estimate the analytic param-
eters of the ellipse C passing from all the points in S.
The generic 2D ellipse equation is given by Eq. (11).
Since this ellipse must verify all of the points
�xi; yi� ∈ S, the posed problem can be formulated in
vector form as the homogeneous overdetermined
linear system:

Au � 0; (16)

where

A �

0
BBBBB@

x21 x1y1 y21 x1 y1 1

x21 x2y2 y22 x2 y2 1

..

. ..
. ..

. ..
. ..

.

x2M xMyM y2M xM yM 1

1
CCCCCA
; (17)

and

u � �a; b; c; d; e; f �T: (18)

The vector u contains the six unknown ellipse param-
eters and theM × 6matrix A is evaluated using all of
the points �xi; yi�, i � 1…M. It is evident that due to
noise, Eq. (16) does not have an exact zero solution;
therefore we seek the best approximation to it: that
is, the u that minimizes ‖Au‖.

Since the solution vector u can be arbitrarily
scaled, a reasonable constraint would be to find sol-
ution for which ‖u‖ � 1. The minimization of ‖Au‖
subject to the constraint ‖u‖ � 1 can be performed
in a least squares sense by applying singular value
decomposition (SVD) on the matrix A:

A � UDVT: (19)

The estimate solution û is the last column of the ma-
trix V and contains the fitted ellipse parameters. The
mean square error (MSE) for all the points contained
in the sequence S is given by

MSE � 1
M

‖Aû‖: (20)

3. Application to the Real Case

In this section, we present the details of the ellipse-
based rectification theory to robustly rectify acquired
InIms where the presence of noise is inevitable. We
also describe the technique used for ellipse extrac-
tion and fitting as well as the approach we followed
to estimate the rectification matrix parameters.

A. Elliptical Edge Extraction

The initial step of our framework is the extraction of
elliptically shaped EI edges from the acquired InIm.
We converted the acquired and perspectively dis-
torted InIm shown in Fig. 6(a) to its grayscale version
and applied an optimal thresholding algorithm [16]
that results in a binary image with separated EI
texture and lens border background.

To extract the elliptical lens border edges, we em-
ployed a boundary isolation technique [17] that re-
sulted in an edge image containing elliptical lens
border edges along with some random shapes corre-
sponding to the random texture of the InIm content.

B. Edge Linking and Ellipse Fitting

After generating the edge image, we used an edge-
linking function to collect edges in lists containing
pixel coordinates.

Various image processing libraries offer this func-
tionality such as [18] and [19]. Edge-linking func-
tions operate on a binary image, collect connected
pixels that represent edges and assign them to lists
of points. In this work, we used the framework imple-
mented in [19] to register N edges and store the

Fig. 6. (a) Distorted acquired InIm, (b) edge image with fitted
ellipses overlaid, (c) rectified image and Delaunay triangulation
on the rectified circle centers, and (d) correctly rotated image with
the registered grid superimposed.
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corresponding pixels in the sequences Si, i � 1…N.
Each of these sequences contains a variable number
of contiguous 2D points.

Subsequently we used the fitting model described
in Section 2.C for each sequence Si to fit an ellipse Ci
and calculated the corresponding fit error MSE�i�.
We collected and sorted these errors in ascending or-
der. Finally, we kept the ellipses corresponding to the
smallest 20% of the sorted error population, which
ensured that point lists that gave inaccurate fits
were rejected. The resulting fitted ellipses overlaid
on the edge image are shown in Fig. 6(b). The fitted
ellipses are subsequently used to calculate the recti-
fication parameters using the approach that follows.

C. Estimation of Rectification Parameters

The resulting ellipse equations correspond to ellipti-
cal lens borders in the distorted InIm. We formed all
possible ellipse pairs �Ci; Cj� and solved the system
formed by Eq. (12). To discard possible degeneracies,
we accepted only systems generating two pairs of
conjugate solutions. These solutions have the form
of Eq. (13), as seen in Section 2.B. and are collected
in the sequence:

P � f�xs0; ys0�; �xs0; y0��xs1; ys1�; �xs1; ys1�;…g: (21)

The points contained in sequence P that correspond
to the ICPs would ideally have exactly the same co-
ordinates and they would generate the same vanish-
ing line using Eq. (14). However, the existence of
noise induces large deviations from the ideal case.

To this end, we followed a simple approach to
identify the ICPs: For each conjugate solution pair
stored in P, we calculated the line Ii given by the
crossproduct:

Ii � �xsi; ysi�T × �xsi; ysi�T: (22)

For each Ii, we estimated the distance from the image
origin and generated the corresponding sequence di.
Figure 7 shows the histogram of di. The correct ICP
candidates produced a vanishing line that does not
intersect the distorted image and is located outside
the image area. Furthermore, since the correct ICPs
coordinates have some perturbation instead of being
identical for every combination of �Ci; Cj�, they pro-
duced a lobe in the histogram of di.

We isolated the lobe shown in Fig. 7 and sub-
sequently located the solutions corresponding to it.

The ICPs �xc; yc�, �xc; yc� are calculated as the median
of the isolated solutions.

Using Eqs. (14), (15), we calculated the vanishing
line parameters l1, l2, l3 that produced matrix Hp as
well as the metric rectification parameters α, β which
produced matrix Ha. We subsequently applied Hp
and Ha, resulting in a slightly rotated image with
all metric properties corrected as shown in Fig. 6(c).
The registered ellipses Ci are transformed to the cor-
responding circles Ci0 using Eq. (9).

We subsequently applied Delaunay triangulation
on the resulting circle centers f�cxi; cyi�g, which re-
sulted in the line segment sequence fLSig. We also
calculated the angle sequence fθig which contains
the angles formed by each segment in fLSig and
the x axis and produced its histogram shown in Fig. 8.
Next we isolated the intervals �−10°; 10°� and [80°,
100°] and locate their corresponding maximum val-
ues θ1, θ2. The segments corresponding to a radius
of 1° around θ1, θ2 are isolated and form two new
segment populations denoted as fShg, fSvg. These
contained segments that are approximately vertical.
We calculated the values:

xh � mean�ΔxfShg� �mean�ΔyfSvg�
2

; (23)

and

yh � mean�ΔyfShg� �mean�ΔxfSvg�
2

; (24)

and the rotation matrix of Eq. (6) as:

R � −
1�����������������

x2h � y2h

q
�

xh yh
−yh xh

�
: (25)

After applying R, we used the method described in
[11] to fit accurate grid lines on the segments that
connected the EI centers. The EI lens pitch in pixels
was set as the mean distance between the estimated
grid lines.

4. Experiments and Results

A. InIm Datasets

The effectiveness of the proposed method was as-
sessed over a large number (K � 30) of optically ac-
quired InIms that were purposely captured with
perspective distortion. The experimental setup used
the technique described in [10]. For the pickup
assembly, we used a Canon EOS-500D camera in

Fig. 7. Histogram of candidate vanishing line distances from the
image origin. The lobe corresponds to correct ICPs.

Fig. 8. Angle histogram of the segments connecting the circle
centers after rectification.
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conjunction with a LA with circular lenses. During
pickup, we introduced slight perspective misalign-
ment to produce the distorted InIms. Note that for
the purposes of this work, lens distortions are not
considered because the camera firmware automati-
cally compensates for basic barrel and pincushion
distortions. In addition to the InIm set of real-world
scenes, we generated a large number of perspectively
distorted raytraced InIms (L � 50) containing differ-
ent gradients, colors, shapes, textures, and EI sizes
using the method described in [20]. The artificial
InIms were further contaminated with various levels
of Gaussian noise to assess the overall robustness of
our framework under variable noise conditions.

B. Evaluation Criteria

To evaluate the rectification performance of the pro-
posed framework, we generated the distortion matri-
ces for the raytraced InIms using Eqs. (3)–(6) by
setting the parameters l1, l2, α, β, θ to a priori known
values. We omitted the parameter l3, since the van-
ishing line is represented in normalized form [13].
The rectification parameters for all the raytraced In-
Ims were subsequently estimated with respect to
their preset ground truth values along with the cor-
responding mean error rate percentages.

We also used two additional objective metrics that
statistically characterized the geometrical consis-
tency of the InIm after applying the proposed recti-
fication framework.

For this purpose, we used the fact that the ideal
square grid formed by the registered grid on the InIm
shown in Fig. 6 in an undistorted InIm contains
equally spaced intersecting segments forming angles
of 90°. To evaluate deviations from this ideal grid
that characterize the undistorted InIm, we calcu-
lated the angles fωg formed between all the intersect-
ing grid segments and the normalized grid segments
lengths fλg. Normalization of the line segments was

performed to provide cumulative results of experi-
ments over InIms with different EI sizes. Finally, us-
ing fωg, fλg we calculated ωs and λs for each dataset
and their respective standard deviations σωs

and σλs .
This was done to evaluate deviations with respect to
the undistorted InIms in the utilized datasets.

Next we summarized the evaluation of our frame-
work’s rectification results on the InIm sets of the
raytraced as well as the optically acquired images.
Figure 9 displays a representative image from each
set showing the 2D image of the scene, the acquired
InIms, and their rectified counterparts.

Figure 10 shows the 2D side view rendered subi-
mages [7], using the undistorted, the distorted,
and the rectified InIms that resulted after applying
our rectification framework as shown in Fig. 9.

Finally we derived the plots shown in Fig. 11 by
using the InIm of Fig. 9(c) contaminated with various
levels of Gaussian noise as input to our algorithm.
Using the formulas in [8], we evaluated the output
PSNR of the rectified EIs shown in Fig. 9(e). In
Fig. 11, we plotted the mean value PSNR as well
as the variance represented by the standard
deviation σPSNR.

C. Results

Table 1 summarizes the rectification parameters
mean relative error for the entire raytraced InIm da-
taset. As this table shows, the relative error for all
involved rectification parameters remains below
3% regardless of the noise levels and the InIm-spe-
cific characteristics (texture and scene setup).

Table 2 summarizes the overall geometric consis-
tency values along with their standard deviations
for the entire raytraced InIm set. As this table shows,
the standard deviation of the cumulative error in ωs
is well below 1° even in highly noise contaminated
InIms. In addition, λs is under 0.04 (4%) regardless
of the noise level.

Fig. 9. Rectification on a raytraced and an optically acquired image: (a) A “3D Objects” scene, (b) an optically acquired “Toy,” (c),(d) the
corresponding acquired and distorted InIms, and (e),(f) rectified InIms using the proposed method. The borders in (c),(f) are shown for
illustration purposes.

10 July 2013 / Vol. 52, No. 20 / APPLIED OPTICS 4965



Tables 3 and 4 summarize the respective results
for the InIm displayed in the first row of Fig 9, which
is included in the set, representing the scene “3D Ob-
jects”with textured objects in a complex background.

The side view subimage renderings corresponding
to Fig. 9 are shown in Fig 10 and the corresponding
rectified EIs PSNR sequence is evaluated in the plots
of Fig. 11 with respect to various noise levels of the

input InIm. The plots shown in Fig. 11 verify that the
proposed InIm rectification approach retains a high
performance ratio even when applied on heavily
noise contaminated InIms.

Additionally, we have summarized the results for
the geometrical consistency parameters over the op-
tically acquired InIm dataset in Table 5 and the

Fig. 10. (a),(b) Side view subimages rendered from the undistorted “3D Objects” and “Toy” InIms, (c),(d) side view subimages of the
“3D Objects” and “Toy” rendered using the perspectively distorted InIms in Figs. 9(c) and 9(d), (e),(f) side view subimages of the
“3D Objects” and “Toy” rendered using the rectified InIms of Figs. 9(e) and 9(f).

Fig. 11. Mean value and standard deviation of the PSNR se-
quence for the rectified EIs of Fig. 9(c). The horizontal axis denotes
the input InIm quality, while the vertical axis denotes the evalu-
ated PSNR sequence of the EIs in the geometrically corrected
InIm.

Table 1. Mean Relative Error Percentages of the Rectification
Parameters for the Entire Raytraced InIm Set

l1 (%) l2 (%) α (%) β (%) θ (%)

Noiseless (dB) 0.55 0.71 0.72 0.81 0.65
30 0.96 1.21 0.85 0.94 0.66
25 1.29 1.58 1.13 1.03 1.12
20 2.02 2.06 1.79 1.77 1.09

Table 2. Cumulative Geometric Consistency Results for the
Raytraced Inim Set

ωs � σωs
σλs

Noiseless (dB) 90.00� 0.09° 0.010
30 90.00� 0.13° 0.013
25 90.00� 0.44° 0.021
20 90.00� 0.76° 0.034

Table 3. Relative Error Percentages of the Rectification Parameters
for “3D Objects”

l1 (%) l2 (%) α (%) β (%) θ (%)

Noiseless (dB) 0.67 0.92 0.93 1.05 0.76
30 1.03 1.12 1.01 1.27 1.16
25 1.17 1.25 1.32 1.64 1.87
20 1.74 1.53 1.94 2.16 2.29

Table 4. Geometric Consistency Results for “3D Objects”

ωi � σωi
σλi

Noiseless (dB) 90.00� 0.15° 0.014
30 90.00� 0.17° 0.022
25 90.00� 0.52° 0.037
20 90.00� 0.87° 0.041
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scene “Toy” displayed in the second row of Fig. 9 in
Table 6. The data in Tables 5 and 6 show that both
measured angle deviation and segment length are
low, remaining well below 0.5° and 0.05 (5%) respec-
tively, in all InIms in the dataset.

5. Conclusions

In this work, we presented a detection and rectifica-
tion framework for perspective distortion that affects
InIms acquired using arrays with circular lenses. For
this purpose, we derived analytic formulas to calcu-
late the parameters of the rectification matrices and
established an automated process to directly esti-
mate these parameters from raw image data. The
proposed method is characterized by increased ro-
bustness using data from multiple non-intersecting
detected ellipses. To this end, we proposed a novel
way to correctly select the ICPs to minimize the total
error introduced during the preprocessing stages.

We finally assessed the robustness and accuracy of
the technique by estimating the relative error in the
calculation of the rectification parameters and meas-
uring the geometric consistency of the rectified InIm
using objective quality metrics. Furthermore, the
side view subimages shown in Fig. 10 as well as
the InIm PSNR evaluation of Fig. 11 verify the high
performance and robustness of the proposed frame-
work to restore the properties of perspectively dis-
torted InIms. In the evaluation process, we used
large datasets of optically acquired as well as ray-
traced InIms to examine the parameters that may
affect the robustness of the rectification framework.
Note that the computationally generated InIm set al-
lowed joint control of both perspective distortion and
noise levels.

As already presented in the respective tables, the
geometric consistency is retained in the InIms of
both sets and is slowly varying for different noise lev-
els. Since noise greatly affected the rectification
framework at the early processing stages and re-
sulted in large propagation errors we concluded that
the proposed framework is robust against high noise
contamination levels.

Note that the ellipse-based fitting and rectification
approach is specifically designed to treat cases with
circular lenses; however, it also could be applied to
other lens geometries. In these cases, the geometric

and perspective centers of the distorted shapes do
not coincide [15], which yields multiple ellipses that
fit a specific distorted rectangle. Hence, this ap-
proach will raise the uncertainty in the preprocess-
ing and parameter calculation stages for other lens
geometries and finally reduce the overall accuracy
of the rectification process. On the contrary, it is more
convenient to integrate the proposed method in
already proposed frameworks to treat circular-lens-
based geometries.

This research has been cofinanced by the Euro-
pean Union (European Social Fund, or ESF) and
Greek national funds through the Operational
Program, “Education and Lifelong Learning,” of
the National Strategic Reference Framework
(NSRF) Research Funding Program: Heracleitus II,
“Investing in knowledge society through the
European Social Fund.”

Appendix A: ICPs Parameter Estimation

The CPs are invariant to the similarity transforma-
tion Hs [13]. Therefore, they are mapped to their cor-
responding ICPs under the perspective distortion
matrix �HaHp�−1 [15] using the following equation:

�HaHp�−1�1;�i; 0�T � ICP1;2: (A1)

After performing the required multiplication and in-
version of the matrices Hp, Ha that are analytically
given in Eqs. (3), (4) we derive the ICPs final form:

ICP1;2 � �αl3 ∓ il3β; l3;−l2; l1α� il1β�T: (A2)

The ICPs are calculated by solving multiple sys-
tems of ellipse equation pairs on the distorted image
plane. Therefore, their numeric values are given by:

ICP1 � �xc; yc�; ICP2 � �xc; yc�: (A3)

The vanishing line’s parameters l1, l2, l3 are calcu-
lated using xc, yc:

�l1; l2; l3�T � �xc; yc; 1�T × �xc; yc; 1�T: (A4)

Now since l1, l2, l3, xc, yc have been estimated, the
plane’s metric rectification parameters α, β are
calculated as follows:

We homogenize Eq. (A2), which yields

8<
:
�xc; yc; 1� �

�
αl3−il3β

−l2−l1α�il1β
; l3
−l2−l1α�il1β

; 1
�

�xc; yc; 1� �
�

αl3�il3β
−l2−l1α−il1β

; l3
−l2−l1α�il1β

; 1
� ; �A5�

and after simplifying and removing the redundant
conjugate equations, it results in:

α − iβ � −l2xc
l3 � l1xc

� l3 � l2yc
−l1yc

; (A6)

Table 5. Cumulative Geometric Consistency
Results for All InIms of the Optically

Acquired Set

ωi � σωi
σλs

90.00� 0.38° 0.043

Table 6. Geometric Consistency Results for
the “Toy”

ωi � σωi
σλi

90.00� 0.46° 0.039
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and

8<
:
α � Real

�
−l2xc

l3�l1xc

�
� Real

�
l3�l2yc
−l1yc

�

β �
���Imag

�
−l2xc

l3�l1xc

���� �
���Imag

�
l3�l2yc
−l1yc

���� : �A7�

According to the previous equation, the metric rec-
tification parameters can be calculated as long as at
least one coordinate—xc or yc—of the ICPs is known.
Parameter β must always be positive [9] since a neg-
ative value mirror-flips the rectified plane.
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