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Abstract

Search engines, such as Google and Yahoo!, provide efficient re-

trieval and ranking of web pages based on queries consisting of a set of

given keywords. Recent studies show that 20% of all Web queries also

have location constraints, i.e., also refer to the location of a geotagged

web page. An increasing number of applications support location-

based keyword search, including Google Maps, Bing Maps, Yahoo!

Local, and Yelp. Such applications depict points of interest on the

map and combine their location with the keywords provided by the

associated document(s). The posed queries consist of two conditions:

a set of keywords and a spatial location. The goal is to find points of

interest with these keywords close to the location. We refer to such

a query as spatial-keyword query. Moreover, mobile devices nowa-

days are enhanced with built-in GPS receivers, which permits appli-

cations (such as search engines or yellow page services) to acquire the

location of the user implicitly, and provide location-based services.

For instance, Google Mobile App provides a simple search service for

smartphones where the location of the user is automatically captured

and employed to retrieve results relevant to her current location. As

an example, a search for ”pizza” results in a list of pizza restaurants

nearby the user. Given the popularity of spatial-keyword queries and

their wide applicability in practical scenarios, it is critical to (i) es-

tablish mechanisms for efficient processing of spatial-keyword queries,

and (ii) support more expressive query formulation by means of novel

1

akrivi
Stamp

akrivi
Stamp



query types. Although studies on both keyword search and spatial

queries do exist, the problem of combining the search capabilities of

both simultaneously has received little attention.

1 Motivation and Problem Statement

The advent of the World Wide Web in conjunction with efficient search en-

gines like Google and Yahoo! has made an enormous amount of information

easily accessible to everybody. Search engines provide efficient retrieval and

ranking of web pages based on queries consisting of a set of given keywords.

Points of interest such as hotels, restaurants and tourist attractions are typi-

cally associated with a document (web page) that is geotagged, which enables

the retrieval of the location of the point of interest from the web page using

common information extraction techniques. An increasing number of appli-

cations support location-based keyword search, including Google Maps, Bing

Maps, Yahoo! Local, and Yelp. Such applications depict points of interest

on the map and combine their location with the keywords provided by the

associated document(s). The posed queries consist of two conditions: a set

of keywords and a spatial location. The goal is to find points of interest with

these keywords close to the location. We refer to such a query as spatial-

keyword query. Recent studies show that 20% of all Web queries also have

location constraints [9], i.e., also refer to the location of a geotagged web

page.

Moreover, mobile devices nowadays are enhanced with built-in GPS re-

ceivers, which permits applications (such as search engines or yellow page

services) to acquire the location of the user implicitly, and provide location-

based services. For instance, Google Mobile App provides a simple search

service for smartphones where the location of the user is automatically cap-

tured and employed to retrieve results relevant to her current location. As

an example, a search for ”pizza” results in a list of pizza restaurants nearby

the user. Twitter is another example where postings can also be geotagged,

and combined with the increasing use of mobile phones for twittering the

amount of information associated with locations also increases. As the num-
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ber of mobile users increases rapidly, the need of such location-based services

is expected to increase as well. More importantly, to accommodate more

complex information needs of mobile users, more advanced query types are

required to capture the users’ intent. For example, a mobile user may be

interested in retrieving cheap restaurants located in her close vicinity that

serve Chinese food and are highly ranked, according to an independent rat-

ings provider such as tripadvisor.com. The challenge is to provide to the

user advanced location-based queries that rank the relevant points of inter-

est according to different user-defined preferences. Furthermore, queries that

relate to a mobile user may also involve temporal information capturing her

movement.

Other applications that provide spatial-keyword search on their data in-

clude image search engines. A typical example is Flickr (http://www.flickr.com/map),

where users manually annotate images using tags that provide a description

of the contents and the location the image was captured. Exploiting this

information, Flickr is able to support queries based on the location of im-

ages. On the other hand, modern digital cameras have integrated GPS facil-

ities that automatically provide the exact location the photo was taken with

higher accuracy than a user can provide. Even though the exact location

may be known, the user still adds keywords that describe the contents of the

photo, for example ”sunset”. This motivates even further the need of sup-

porting spatial-keyword queries and highlights their importance in real-life

applications.

Given the popularity of spatial-keyword queries and their wide appli-

cability in practical scenarios, it is critical to (i) establish mechanisms for

efficient processing of spatial-keyword queries, and (ii) support more expres-

sive query formulation by means of novel query types. Although studies on

both keyword search and spatial queries do exist, the problem of combining

the search capabilities of both simultaneously has received little attention.

Some existing research challenges are:

• Advanced and expressive querying mechanisms for points of interest

that combine spatial information and textual relevance. To this end,
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various novel query types complying with the paradigm of spatial-

keyword search need to be introduced to cover a wide variety of user

information needs.

• Novel indexing structures capable to support complex spatial-keyword

queries effectively, by means of harnessing the merits of spatial data

structures and text indexes.

• Efficient query processing algorithms that drastically prune the search

space, capitalizing on the available indexes, and enabling ranked re-

trieval of results.

To illustrate a sample of the advanced query types that we target, consider

the following scenario of a web-based map service that provides information

about points of interest (hotels, restaurants, etc.) in the user’s close vicin-

ity. For example, a restaurant may be annotated with keywords such as:

”restaurant”, ”Chinese”, ”live music”, but also information about the qual-

ity of service (such as ”cheap”), or ratings extracted from an independent

provider such as tripadvisor.com. Furthermore, such keywords may be ex-

tracted from web pages. Typical queries that are not currently supported by

web applications (such as Google maps) include:

1. ”Which are the best (highest rated) restaurants serving Chinese food

that are at most 5km from my current location?”

2. ”Which are the cheapest hotels with wireless internet, located nearby

the most famous tourist attraction in Paris?”

3. ”Which are the top-3 hotels that have the best combination of restau-

rants and bars in their close vicinity?”

4. ”Given my current route from Paris to Lyon, which is the best restau-

rant for dinner?”

In these queries, the words ”restaurant”, ”hotel”, ”Chinese”, ”wireless in-

ternet”, ”tourist attraction” are indicative keywords that may appear in the

annotations of points of interest.
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2 Spatial Databases

Emerging applications require advanced query processing primitives that go

beyond exact match queries. Such applications often need to handle multi-

dimensional data, whether these dimensions are related to specific attributes

of the data objects or are the result of advanced feature extraction algo-

rithms. Querying multidimensional data is challenging even in a centralized

domain. In this section, we introduce fundamental query types that are com-

monly used in processing multidimensional data. We first discuss similarity

search based on range queries and highlight their relation to nearest neighbor

queries. Top-k queries, that rank data objects based on some scoring function

are also discussed. We conclude our exposition with the recently introduced

skyline query, as a generalization of ranking using many different, and often

conflicting criteria. We discuss skyline computation over subspaces of the

data domain and its relationship to top-k queries.

2.1 Multidimensional Data Model

During the last decades, an increasing number of applications, such as med-

ical imaging, molecular biology, multimedia and scientific databases, have

emerged where a large amount of high-dimensional data points needs to be

processed. In addition to exact match queries, emerging applications call

for advanced query types. For instance, queries like “which data objects are

most similar to a query object” or “which data objects are the best trade-off

between different object’s features” need to be support.

Let us assume a data collection S of n objects represented as points in a

d-dimensional (feature) space D characterized by dimensions {d1, ..., dd}. A

data object is treated as a point p in D defined via a set of coordinate values

in that space: p = {p1, ..., pn}. Each coordinate value pi may represent an

attribute of the object that is of interest to the application, or, it may be

the result of a scoring function that evaluates certain features of the object.

In what follows, we assume that the points’ coordinates are numerical non-

negative values that depict certain features of database objects.

A two-dimensional example is shown in Figure 1. In the figure, a database
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Figure 1: Feature space

of objects oj is depicted along with a representation of the objects as points

in a two-dimensional space. The coordinates of each object are calculated

via two scoring functions s1() and s2(). Thus, object oj is mapped to

p=(p1, p2)=(s1(oj), s2(oj)). In the following, we do not distinguish between

inherent attributes of the object and extracted features. We prefer to refer

to its multidimensional representation and, we use the terms object and data

point interchangeably.

Advanced query primitives have emerged in order to allow efficient pro-

cessing of objects depicted in a high-dimensional space. Examples include

similarity search based on range and nearest neighbor queries, top-k queries

and the skyline operator. In the following, we shortly describe these query

types.

2.2 Similarity Search in Metric Spaces

Several applications, such as multimedia databases [24], employ feature trans-

formation, which projects important features or properties of data objects

into a high-dimensional space. Subsequent processing in that space often

requires support for similarity search in order to retrieve similar objects.

Similarity search in metric spaces focuses on supporting queries, whose pur-

pose is to retrieve objects which are similar to a query point, when a metric

distance function dist is used to measure the objects’ (dis)similarity.

More formally, a metric space is a pairM = (D, dist), where D is a domain

of feature values and dist is a distance function with the following properties:
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(a) Range query
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(b) k-nearest neighbor search

Figure 2: Similarity search examples

1. dist(p, q) ≥ 0 (non negativity),

2. dist(p, q) = 0 iff p=q (identity of indiscernibles),

3. dist(p, q) = dist(q, p) (symmetry),

4. dist(p, q) ≤ dist(p, o) + dist(o, q) (triangle inequality).

A smaller distance between two objects is used by the application to

indicate higher degree of similarity among them. Similarity is symmetric,

however, because of the triangle inequality, an object may be similar to two

dissimilar objects.

Similarity search in metric spaces involves, two different types of queries,

namely range and nearest neighbor queries.

2.2.1 Range Query

Range queries are specified by a query object q and a range (radius) value

r. The result set of the query is defined to contain all the objects o from the

dataset that have a distance to the query object q that is less than or equal

to radius r:

Definition 1. Range query R(q, r): Given a query object q and a radius r,

a point p ∈ S belongs to the result set Rr
q of the range query iff dist(q, p) ≤ r.
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A range query R(q, r) can be interpreted as ”retrieve all objects that are

within distance r to q”. Figure 2(a) depicts a range query defined by query

point q and a radius r. The result set of this query contains data points f

and l.

2.2.2 k-Nearest Neighbor Query

A drawback of range queries is that the cardinality of the result set is not

known in advance, but can be anything between zero and the size of the

database. Consequently, selection of an inappropriate value for the query

range may lead to very few or too many query results. In the first case, a

new range query has to be posed with a larger range, which leads to redun-

dant processing cost. In the second case, more than necessary objects are

retrieved, which again leads to increased processing cost. In practice, a good

selection of a radius value r is difficult to obtain as it requires knowledge of

the underlying distribution of data in the projected feature space.

The k-nearest neighbor (k-NN) [22, 13] query overcomes this problem by

giving the user the ability to specify the size k of the answer set. This query

type does not require a user to provide a query range and is therefore far

easier to use than the similarity range query. The k-nearest neighbor query

returns the k most similar (to a query point q) data points from the dataset

and is defined as follows:

Definition 2. k-nearest neighbor query NNk(q): Given a query object

q and a positive integer k, the result set NNk
q of the k-nearest neighbor, is a

set such that NNk
q ⊆ S, |NNk

q | = k and ∀u, v : u ∈ NNk
q , v ∈ S − NNk

q it

holds that dist(q, u) ≤ dist(q, v).

In the definition we assumed that the dataset contains more than k points

(n = |S| ≥ k), which is typically the case. Otherwise, the result of the query

is, trivially, the set of all objects in S. Moreover, the k data objects with

the smallest distance may not be unique. When more than one objects have

the same distance to the query point, one or more of them may be chosen

randomly in order to produce a result set containing exactly k points.
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Figure 3: Top-k example

Intuitively, a k-nearest neighbor query states “retrieve the k objects in

S which are closest in distance to a given object”. Figure 2(b) illustrates

the works of the nearest neighbor query. Given the query point q the figure

depicts the results of the 2-nearest neighbor search (k=2), namely points f

and l.

Given a query object q, a k-nearest neighbor query is equivalent to a

range query specified by query point q and a radius equal to the distance of

the k-th neighbor.

Observation 1. Given a query object q, let rk be the distance of the k-th

nearest neighbor p, i.e., rk = dist(q, p) then ∀r ∈ NNk
q it holds that r ∈ Rrk

q .

Of course the range query may return a few additional objects whose

distance from q is exactly rk. Observation 1 expresses that any nearest-

neighbor query can be transformed and have its results computed via a range

query, if the distance to the k-th nearest neighbor was known a-priori.

2.3 Top-k Query

For decades, top-k queries were mainly studied in the information retrieval

research field, aiming at ranking text documents according to some query

terms, both efficiently and effectively. More recently [5, 14] the data man-

agement community has realized the benefits of top-k queries in database
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systems and several efficient algorithms for their evaluation have emerged.

Top-k queries on multidimensional datasets compute the k most interest-

ing results with regards to a monotone score aggregation function, such as

weighted aggregation, applied on the attribute values.

Definition 3. An aggregation function f is increasingly monotone, if ∀p, p′ ∈

S with pi ≤ p′i, ∀i, then f(p) = f(p1, ..., pd) ≤ f(p′
1
, ..., p′d) = f(p′).

The property of increasing monotonicity means that whenever the score

of all dimensions of the point p is at least as good as that of another point p′,

then we expect that the overall score of p is as least good as p′. The result

of a top-k query is the ranked list of the k objects with lowest score values.

As in the case of k nearest neighbor queries, when the database consists of

fewer than k points, the result contains the whole dataset.

Definition 4. Top-k query: Given a positive integer k, the result set TOPk

of the top-k, is a set such that TOPk ⊆ S, |topk| = k and ∀u, v : u ∈

TOPk, v ∈ S − TOPk it holds that f(u) ≤ f(v), assuming that minimum

values are preferable.

A special case of monotone functions is the weighted sum function, also

called linear. Each feature (dimension) dj has an associated query-dependent

weight wj indicating the dimension’s relative importance for the query. The

aggregated score for object p is defined as a weighted sum of the individual

scores: score(p) =
∑d

j=1
wj × pj, where wj ≥ 0 (1 ≤ j ≤ d) and ∃j such that

wj > 0. If some weights are set equal to zero, then a top-k query refers to

only to a subset of the available features. The weights indicate the user’s

preferences and influence the ordering of the data objects and therefore the

top-k result set. For example, consider the dataset depicted in Figure 3. By

assigning a high weight to values of dimension x (distance), point a is the

top-1 object, while if a low weight is used, point k becomes the top-1 object.

A top-k query takes two parameters: a user specified monotone function

f and the number of requested objects k. Notice that both the scoring func-

tion and the parameter k may differ for each query and we are interested in

retrieving the k objects with the best (minimum) values of the scoring func-

tion. In the special case of the weighted sum, the user specifies the weighting
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Figure 4: Skyline example

of each feature, i.e., how important this feature is based on his preferences

and therefore, a top-k query takes two parameters: a d-dimensional vector

w = {w1, . . . , wd} and the number of requested objects k.

2.4 Skyline Operator

Skyline queries [2] have attracted much attention recently, since they help

users to make intelligent decisions over complex data, where many conflicting

criteria are considered. Let us assume for example a database containing

information about hotels. Each tuple of the database is represented as a

point in a data space consisting of numerous dimensions. In our example,

the y-dimension represents the price of a room, whereas the x-dimension

captures the distance of the hotel to a point of interest such as the beach

(Figure 4). According to the dominance definition, a hotel dominates another

hotel because it is cheaper and closer to the beach. Thus, the skyline points,

in the example points a, i and k, are the best possible trade-offs between

price and distance from the beach.

In the following, we define the skyline and subspace skyline queries and

point out their relation to top-k queries.
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2.4.1 Skyline queries

Definition 5. Skyline: A point p ∈ S is said to dominate another point

q ∈ S, denoted as p ≺ q, if (1) on every dimension di ∈ D, pi ≤ qi; and (2)

on at least one dimension dj ∈ D, pj < qj. The skyline is a set of points

SKY ⊆ S which are not dominated by any other point. The points in SKY

are called skyline points.

Without loss of generality, we assume that skylines are computed with

respect to min conditions on all dimensions and that all values are non-

negative.

The cardinality of the skyline set SKY depends on the data distribu-

tion, the dimensionality and the cardinality of the dataset. It has been

shown [6, 11] that the expected number of skyline points is Θ(lnd−1 n/(d−1)!)

for a random dataset. The result suggests that the skyline cardinality in-

creases with the dataset dimensionality. The intuition is that as the number

of dimensions increases, it is more likely for any point p that there exists

another point q, where p and q are better than each other in different sub-

sets of dimensions. In other words, the probability of one point dominating

another point in the full space is decreasing as the dimensionality increases.

Therefore, the cardinality of the skyline set increases rapidly with the dimen-

sionality of the dataset.

2.4.2 Subspace skyline queries

Applications often provide numerous candidate attributes that they can use

for data analysis. In our running example, the hotel database could contain

numerous other attributes, such as the number of rooms, the age of the hotel,

the size of room, the star rating, etc. The notion of skyline can be extended

to subspaces, where given a set of d-dimensional objects, a subspace skyline

query only refers to a user-defined subset of attributes. Each non-empty

subset U of D (U ⊆ D) is referred to as a subspace of D. The data space D

is also referred as full space of the dataset S.

Definition 6. Subspace Skyline: A point p ∈ S is said to dominate

another point q ∈ S on subspace U ⊆ D, denoted as p ≺U q, if (1) on every
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dimension di ∈ U , pi ≤ qi; and (2) on at least one dimension dj ∈ U , pj < qj.

The skyline of a subspace U ⊆ D is a set of points SKYU ⊆ S which are not

dominated by any other point on subspace U . The points in SKYU are called

skyline points on subspace U .

Consider for example the dataset depicted in Figure 4. The skyline points

are SKY = {a, i, k}, while for the (non-empty) subspace U = {x} the skyline

points on U are SKYU = {a, b}. Notice that point b is a skyline point on the

subspace {x} but it is dominated by point a in the full space {x, y}.

Observation 2. A skyline point p ∈ SKYU on a subspace U ⊆ D is either a

skyline point on D, or is dominated on D by another skyline point q ∈ SKYU ,

for which pi = qi, ∀i : di ∈ U .

2.4.3 Relation to top-k queries

Skyline queries relate to top-k queries, and can be used to discard points

that cannot belong to the top-k result set.

Observation 3. The top-1 object for any increasingly monotone aggregation

function belongs to the skyline set.

Proof: Consider a point q that does not belong to the skyline, but it is

the top-1 for a query defined by an increasingly monotone function f . Then,

there exists another point p that dominates q, i.e., on each dimension di ∈ D,

pi ≤ qi; and on at least one dimension dj ∈ D, pj < qj, hence f(p) < f(q),

and since f is increasingly monotone this leads to a contradiction, because

q is the top-1, i.e., f(q) < f(p). Thus, the top-1 object for any increasingly

monotone function belongs to the skyline.

For example, consider the dataset depicted in Figure 3. By assigning a

high weight to the score of attribute x, point a is the top-1 object, while

if a low weight is used, point k becomes the top-1 object. Both a and k

belong to the skyline set. This observation can be adopted for efficient top-k

evaluation, by using the notion of the k-skyband operator [18]. The result

set of any top-k query is a subset of the k′-skyband set, with k ≤ k′.
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3 Text Retrieval

A document d is represented by a vector. Each dimension corresponds to a

distinct term in the document. The value d(t) of a term t in the vector is

computed by a language model [19]. A commonly used model is described

by the following equation:

d(t) = (1− λ)
tf(t, d)

|d|
+ λ

tf(t, C)

|C|

where tf(t, d) is the term frequency (number of occurrences) of term t in

document d, tf(t, C) is the term frequency of term t in the entire document

collection C, and λ is the smoothing parameter.

Definition 7. A keyword query is defined by a set of keywords w1, . . . , wm.

The result is a list of objects ordered by the relevance of their textual descrip-

tions to the query keywords, as measured by an IR ranking function [19].

Definition 8. A special case is the Boolean keyword query which returns

the set of all objects whose text document contains all of w1, . . . , wm.

Approximate string retrieval has been also studied in the related litera-

ture. The main goal is to find strings that match the given keyword approx-

imately and is important in the case that users have spelling errors when

they type the queries. Also, approximate string retrieval is necessary for

type ahead search. In order to measure the similarity of two string usually

the edit distance is applied. The edit distance of two strings is defined as

the minimum number of changes in spelling (insertion, deletion, or substitu-

tion) required to change one string into another. In following we define three

commonly used predicates used for approximated string retrieval.

Definition 9. Prefix match A string s is a prefix match of t, if s is a

prefix of t.

Definition 10. Substring match A string s is a substring match of t, if

s is a substring of t.
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Symbols Description

O Database
|O| Cardinality
oi Data object
pi Multi-dimensional data point of oi
di Textual description of oi
Q Spatial keyword query
k Number of requested results
q Multi-dimensional query point of Q
{w1, . . . , wm} Set of keywords of Q
f Ranking function that combines the spatial and textual relevance

Table 1: Overview of symbols.

Definition 11. Approximate match Given a threshold τ , a string s is an

approximation of t if the edit distance between s and t is less than τ .

4 Spatial-Keyword Search

In this report, we assume a database O that stores |O| geo-tagged data

objects oi. Each object oi relates to a multi-dimensional data point pi and

document di. The point pi is a location descriptor in the multidimensional

space, while the document di captures the textual description of objects oi

Figure 5 depicts an example of a database storing information of hotels.

In this example [10], each object oi is associated with a 2-dimensional points

pi that consists of the latitude and the longitude of the hotel and describes

its location. The textual information di of hotel oi is the is the concatenation

of the name and amenities attributes.

As mentioned before a nearest neighbor query searches through the mul-

tidimensional space to find the k nearest objects to the specified query point

q. Then, the spatial objects are ranked by distance such that an object closer

to q has a higher rank. Keyword search enables retrieving data objects based

on textual information. Spatial-keyword search combines both approaches

allowing users to retrieve data objects based on their spatial and textual
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Figure 5: Example of sample database of hotels [10]

information.

Definition 12. A top-k spatial keyword query Q is a combination of

a top-k spatial query and a keyword query. In particular, Q is defined by a

number k of requested results, a multidimensional point q, a set of keywords

{w1, . . . , wm}, and a ranking function that combines the spatial and textual

relevance to an overall score. The result of Q is a list of the top-k objects

ranked according to the ranking function.

In [12], the spatial-keyword query is defined as a combination of range

queries and boolean keyword search. We refer to this query type as boolean-

range spatial keyword queries.

Definition 13. A boolean-range spatial keyword queries [12] is defined by a

spatial part specified as a minimum bounding rectangle (MBR) and a set of

keywords. This query applies the AND semantics and is defined as the one

in which all the keywords are required to be present in the retrieved records

and the locations of all retrieved records should fall in the given MBR.

Definition 14. A special case is the distance-first top-k spatial key-

word query [10], which returns a ranked list of the k objects that contain

all of w1, . . . , wmand are closest to q. That is, distance-first top-k spatial key-

word query is a combination of a top-k spatial query and a Boolean keyword

query.

In the example depicted in Figure 5, assuming the query point q =

[30.5, 100.0], the hotel H4 is ranked first if only the spatial information is
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considered. Considering a boolean keyword query with keywords {internet,

pool}, the result set contains two hotels namely H2 and H7. The result

of a distance-first top-k spatial query with k = 2, q = [30.5, 100.0] and

{wi} = {internet, pool} is the ranked list {H7, H2}.

5 Indexing techniques

The problem of indexing location information as well as text information was

studied in [30]. The main challenge in combing spatial and textual indexes

is that the location information is two-dimensional and in Euclidean space,

while the the index of conventional text search is set-oriented. The authors

proposed to use a hybrid index structure, which integrates inverted files and

R∗-trees, to handle both textual and location aware queries. Three different

combining schemes were studied: (1) inverted file and R*-tree double index,

(2) first inverted file then R*-tree, (3) first R*-tree then inverted file.

In [12], the authors define and study boolean-range keyword queries. The

authors study the performance bottlenecks of different indexing mechanisms

and develop a novel indexing structure called KR∗-tree that captures the

joint distribution of keywords in space and significantly improves perfor-

mance over other index structures.

In [10], the problem of top-k spatial keyword search is studied. The au-

thors focus on boolean keyword search leading to the definition of distance-

first top-k spatial keyword query. The IR2-Tree is proposed, which is an

efficient indexing structure that stores spatial and textual information for a

set of objects. The IR2-Tree is a combination of an R-Tree and signature

files and each node of an IR2-Tree contains both spatial and keyword infor-

mation. The spatial information is summarized by using minimum bounding

boxes, while the textual information is stored by using signatures. The au-

thors propose an efficient incremental algorithm is presented to answer top-k

spatial keyword queries using the IR2-Tree and show that their approach

performs efficiently.

Two different [9, 16] indexing approaches have been proposed that employ

a hybrid index that augments the nodes of an R-tree with inverted indexes.
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The inverted index at each node refers to a pseudo-document that represents

all the objects under the node. During query processing, the index is exploit

based on the spatial information and in order to verify that a node is relevant

to query keywords, the inverted index at each node is retrieved. The score

that derives from the vector that represents the pseudo-document of a node

is an upper bound for the textual relevance of any document index by this

node. Therefore, the nodes can be rank and accessed based on their spatial

and textual relevance and a top-k query can be processed efficiently. Another

hybrid indexing structure that combines the R*-tree and bitmap indexing to

process the spatial-keyword query was proposed in [29].

The Spatial Inverted Index (S2I) was proposed in [20] for processing top-k

spatial keyword queries more efficiently. The S2I index maps each keyword

to a distinct aggregated R-tree that stores the objects with the given term.

The aggregated R-tree stores the latitude and longitude of the objects, and

maintains an aggregated value that represents the maximum term impact

of the objects under the node. In fact, the aggregated R-tree is employed

only when the number of objects exceeds a given threshold. As long as the

threshold is not exceeded, the objects are stored in a file, one block per term.

The authors in [7, 8] notice that there is significantly more textual than

spatial data in current search engines and claim that it is important to focus

on the textual aspect of the problem. In order to verify experimentally this

claim comparing three basic indexing approaches are compared: 1) an multi-

dimensional index in which an inverted index is maintained at each leaf,

indexing all documents within the leaf’s MBR, 2) R*-Tree that assumes an

oracle that can prune unproductive subtrees, and thus supersedes many of the

optimizations in the literature and 3)a brute-force Text-First baseline first

determines all textually relevant documents using a state-of-the-art inverted

index implementation. The experimental evaluation shows that state-of-the-

art query processing techniques for text data are quite efficient. Thus, it is

important to consider approaches that preserve and exploit these techniques.
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6 Advanced query types

Reverse Spatial Textual k Nearest Neighbor (RSTkNN) search is defined

in [17]. The aim of RSTkNN queries is to find the objects that take the

query object as one of their k most spatial-textual similar objects. The

authors design a hybrid index tree called IUR-tree (Intersection-Union R-

Tree) and employ a branch-and-bound search algorithm to process RSTkNN

queries efficiently.

The problem of retrieving a group of spatial web objects such that the

groups keywords cover the query’s keywords and such that the objects are

the nearest to the query location and have the lowest inter-object distances

was studied in [4]. This problem is NP-complete and can be solved efficiently

by approximate algorithms.

In [3] the concept of prestige-based relevance to capture both the textual

relevance of an object to a query and the effects of nearby objects is proposed.

Therefore, a new type of query, the Location-aware top-k Prestige-based

Text retrieval (LkPT) query, is proposed that retrieves the top-k spatial

web objects ranked according to both prestige-based relevance and location

proximity.

A top-k spatial keyword query returns the k best objects ranked in terms

of both distance to the query location and textual relevance to the query key-

words. Most of the approaches assume Euclidean space. However, for most

real applications, the distance between the objects and query location is con-

strained by a road network (shortest path). In [21], the problem of processing

top-k spatial keyword queries on road networks (where the distance between

the query location and the spatial object is the shortest path) is studied.

Wu et al. [27] study the problem of keeping the result set of spatial-keyword

queries up-to-date, while the user is moving on a road network.

Moreover, [26] joint processing of multiple top-k spatial keyword queries,

which is important for the query response time during high query loads. Fi-

nally, effective caching of shortest paths for location-based services is studied

in [25]
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7 Approximate string search

Approximate-keyword queries are studied in [1]. An index structure called

LBAKtree that combines approximate indexes with a tree-based spatial in-

dex is proposed, so that location-based approximate-keyword queries can be

processed efficiently. In [28], the MHR-tree is designed for approximate string

search in spatial databases. The MHR-tree is based on the R-tree augmented

with the min-wise signature and the linear hashing technique.

Users that use mobile devices often use services like yellow page to to

find businesses using keywords near their current location. Typing the entire

query is cumbersome and prone to errors, especially from mobile phones.

In [23], the authors address this problem by introducing type-ahead search

functionality on spatial databases. Like keyword search on spatial data,

type-ahead search needs to be location-aware, i.e., with every letter being

typed, it needs to return spatial objects whose names (or descriptions) are

valid completions of the query string typed so far, and which rank highest in

terms of proximity to the user’s location and other static scores. An efficient

method for location-aware type-ahead search is proposed by using a formal

model for query processing cost and developing techniques that optimize that

cost.

A similar problem is studied in [15]. The textual information is a set of

keywords and the location-based instant search returns those documents that

contain all keywords and have a keyword that satisfy the prefix relation with

the keyword that is currently typed. Furthermore, the approach proposed

in [15] support both range queries and nearest-neighbor queries for the spatial

part of the query.

8 Summary

With the popularization of geotagging an increasing number of applications

have flourished that provide location-based services with some primitive form

of keyword search. This report overviews the existing techniques related to

spatial-keyword search. Several research challenges associated with the effi-
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cient support of spatial-keyword search are still not address by the existing

approaches. Two main factors are critical for location-based Web search

engines, thus determining their overall performance: the efficiency of query

processing for spatial-keyword queries and the quality of the retrieved points

of interest. The efficiency of query processing directly influences the query

throughput, which is very important in the context of Web applications, since

the aim is to serve many concurrent user requests with minimum latency. On

the other hand, the quality of the result is an equally important parameter

that influences the user satisfaction from the search engine. High quality of

service requires combination of techniques used in keyword search (for exam-

ple approximate keyword search) and spatial queries (for example advanced

spatial query types).
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