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ABSTRACT

In this paper, a novel algorithm for bandwidth reductiondiap-
tive distributed learning is introduced. We deal with déflon net-
works, in which the nodes cooperate with each other, by exgihg
information, in order to estimate an unknown parameterorect
interest. We seek for solutions in the framework of set taéoesti-
mation. Moreover, in order to reduce the required bandwigtthe
transmitted information, which is dictated by the dimensas the
unknown vector, we choose to project and work in a lower dsian
Krylov subspace. This provides the benefit of trading off elirsion-
ality with accuracy. Full convergence properties are presk and
experiments, within the system identification task, dertrates the
robustness of the algorithmic technique.

Index Terms— Adaptive distributed learning, Krylov sub-
spaces, projections.

1. INTRODUCTION
Wireless sensor networks (WSNSs) have attracted consilgeirgtbr-
est over the recent years, due to the plethora of applicatiowhich
they contribute. Typical examples of these are: acousticcgolo-
calization, life sciences, e.t.c. A typical WSN consistaafumber
of nodes, which sense an amount of data from the environragdt,
perform the essential computations, in order to estimategnown
vector of interest. This paper deals with the case wherdalhbdes
take part in the computations, which is known as the decérdch
mode of operation. In such a scenario, nodes do not act as in
vidual learners, but cooperate with each other. Such a catipe
is known that results in an enhanced performance, [1]. Tywedy
of decentralized solutions have been proposed. The incrnén
which each node communicates with only one node, callechreig
bour, and henceforth the network has a cyclic topology, f.and
the diffusion, where a node, s&y is able to communicate with a
number of nodes, that constitute the neighbourhodd efg., [1, 3].
In this paper, we consider a diffusion network in which thde®
are scheduled to estimate, adaptively, an unknown, yet contm
all the nodes, parameter vector, which is assumed to livedmri-
dimensional Euclidean spa@™. The problem is attacked within
the set theoretic framework; instead of seeking for a singletion,
we seek for a set of possible solutions. This set is formedhby t
intersection of a sequence of closed convex sets. Each dhesg#
convex sets defines a regionl®i*, which consists of all the points
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that are in agreement with a measurement point in the tiguiddta
set. The term in agreement means that it results in an eabolieys
a bounding condition. Such an approach is in line with roBtesis-
tics loss functions, which were recently popularized in ¢tbatext
of Support Vector Regression. For the specific error boughdon-
dition adopted in this paper, the aforementioned closedeorets
take the form of hyperslabs.

In addition, since cooperation implies the exchange betwee
nodes, at every time instant, of the coefficients of the obtained
estimates, the required communications bandwidth is tiree-
lated to the dimensionality &™ . In order to reduce the bandwidth
budget, we choose to project and work in a subsfte D < m,
of lower dimension. In order to “control” the optimality ohe
projection, theéR? subspace is selected to be the respective Krylov
one, due to its strong connection with the optimal Wieneutsah
[4, 5]. Itturns out that the basic recursion of the develoglgdrithm
consists of projections of points, lying in the Krylov subsp, onto
the intersection of this subspace with hyperslabs defin@&'inAn
analytic formula will be presented, as well as the theoratialysis
of the algorithm, which enjoys a number of nice convergenopp
erties. Finally, experiments verify the robustness of tlgorithm
even in cases when the subspace is of significantly lowerrgioe
than the original unknown vector.

2. NETWORK AND PROBLEM FORMULATION

The set of real numbers and the set of non-negative integénsen

dctilienoted byR andN respectively. Moreover, vectors will be denoted

y boldface letters, matrices by uppercase letters(gfdwill stand
for the transpose of the respective vector or matrix. FynaH || will
stand for the Euclidean norm at€k - } for the expectation operator.

Our general goal is to estimate a parameter vector of irtteres

w* € R™, through measurements collected at ffienodes of the
diffusion network. We assume that each nddeat time instance,
has access to the measuremd@is(n), ux,n) € R x R™, which
are related according to the linear system

= ug,nw* + v (n),

dk(n) @
wherev, (n) is the noise process with standard deviation equal.to
The general concept of a diffusion network can be summarized
follows. Each sensor collects information from its enviramt, i.e.,
the measurement pdidy (n), ux,» ), in order to proceed to the adap-
tation step, and it also exploits the estimates transniityets neigh-
bouring nodes. From now oWV}, will stand for the neighbourhood
of nodek, i.e., the nodes with which communication is possible.
Such a scenario can be seen as a fusion of the estimatesedlic
the nodes of the neighbourhoad; (n), | € Nj. For nodek, at time
instancen, the most common example of a combination strategy is:



¢k( ) = ZleNk Ckl'wl( ) WhEI'ECk_,l =0if { ¢ N, cey > 0
if 1 € Nipand}>, .\, ek = 1. It has been verified ([3]), that
for a properly chosen adaptation algorithm, the combimasivat-
egy can lead to asymptot@mnsensuswhich implies that the nodes
will reach the same estimate, and that the performance oéteec-
tive adaptive filters is better, compared to the case wheraddes
work individually, e.g., [6]. Depending on the way with whithis
fused information takes part in the computations, we caméefie
following combination strategies: combine-adapt, in whibe in-
formation collected by the neighbourhood is fused underrtaice
protocol and then is put into the adaptation step, e.qg.,][1A8apt-
combine, where the adaptation step precedes the combirzdic,

g., [6], and consensus based, where the computationsaaie im
parallel and there is no clear distinction between the combind
the adapt steps, e.g., [7].

3. THE ALGORITHMIC FRAMEWORK

A set,C C R™, will be called convex ifvb,, b2 € C and Vo €
[0,1], ab1 + (1 — a)b2 € C. This implies that every line segmen
with endpointsb,, b, will lie in C. Moreover, the projection map-
ping, Pc ontoC, is the mapping which takesa to the uniquely
existing point,Pc(w) € C, such thaflw — Pe(w)|| = inf{v € C :
lw — w]]}.

The algorithm, to be described, belongs to the family of the

Adaptive Projected Subgradient Method (APSM) [8]. The gahe
notion is to find points that are egreementvith the measurements.

To be more specific, every poimt that satisfies the bounded condi-

tion!

S, = {w € R™ : |d(n) — ulw| < €}, 2

will be in agreement with the current measurements set. bl t

points that are defined by (2) lie in a hyperslabRi'. The user-

defined parameterdetermines the hyperslab’s width, and it is cho-

sen so as to account for the noise, e.g., [3]. Our initial,taskv, be-
comes to seek for points lying in the intersection of thegeehglabs,
which “arrive” sequentially. This can be achieved by a segeeof
projections onto them, and the occurring algorithmic sohésn

n

Y. wiPs,(w(n) - w(ﬂ)) ;

j=n—q+1
3
where ¢ determines the number of hyperslabs considered at ti
n, and controls the convergence speed [9]n) is the step-size
that guarantees convergende,_, ., w; = 1andPs,(-) stands
for the projection operator ont§,,, given by: Ps, (w) = w +
Brnn, Yw € R™ with

w(n+1)

w(n) + p(n) <

d T
(n) —upw+ 6, d(n) —ulw < —e,
llwnl®
Bn =140, ld(n) —ugw| <e,
d(n) — ulw —
(n) — upw 6, d(n) —ulw > e
llwnl®

4. REDUCED RANK DIFFUSION ALGORITHM

A modified version of (3) with application to diffusion netviks was
presented in [3]. The steps of the algorithm, in each node tree

1Here, the subscript which denotes the node is suppressed.

following 2

= > criwi(n) (4)
1EN,
wi(n+1) = @r(n) + pr(n)x
< Z wk-,jPSk,j (¢k(n)) - ¢k(n)> ) )
Jj=n—q+1

where Sy, ; andwy,; are defined in a similar way as in (2). It can
be readily seen that (4) is the combination step, whereass the
adaptation one. Hence, the algorithm belongs to the fanfith®
combine adapt algorithms.

From (4) it is not difficult to see that every node, at everydim
instance, transmits its estimate to the neighbouring nodésch
amounts tan coefficients to be transmitted. In order to reduce this
number, a possible strategy is to restrict the initial sotuspace
(R™) to a subspace of lower dimension, s@y whereD < m. In
this paper, we will consider Krylov subspaces for dimenaiity re-

¢ duction (see also [4, 5]). For a given matex(m x m) and a vector
¢ (m x 1), the definition of theD-dimensional Krylov subspace is
Kp(A,c) =span{c, Ac,..., AP e}

Let us defineR = E{u,ul} andp = E{d(n)u,}, where
d(n),u, are related according to (1); the celebrated Wiener-Hopf
equation [10] states thav* = R~ !p. It has been proved, e.g.,
[5], that the reduced rank Wiener filter, of dimensibn belongs to
Kp(R,p). In other words, it is a reasonable strategy to seek for a
possible solution in this subspace. However, in distridhutetworks,
despite the fact that every node seeks for the same unknostorye
the statistics in each node may be different. This implies$ éhdif-
ferent viewpoint has to be followed. Let us define the mearasgu
error loss functiorC : R™ — [0, +00), for the whole network

N
_ 1 T 2
Llw) =5 38 {(@un) - uf aw)’}
L
= NZ('LU Ryw — 2wpy + 0y,)
k=1
N
T
=w Rw—2wp + NZ di> (6)
whereadk = E{di(n)}, R = =X, E{up,ul,} =
m% Zk 11%’C andp - NZk 1E{dk( )uk,n} - NZk:1pk-

It can be seen, that the solution minimizing (6) is givendby =
R’~1p’. This argument indicates that it may be reasonable to select
R’ andp’ (i.e., the average values) in order to construct the respec-
tive Krylov subspace. The guestion, now, is how to constRIGtp’,
since we assume that there is no a-priori knowledg&ef px. A
possible strategy, followed also in [4], is to resort to apgmations

of the unknown guantities, in which the measuremefién), v, n,

are exploited. To be more specifiBy , = YRin_1 + Uk n UL,
andpi,n = YPk,n—1 + dr(n)u,n, wherey € (0,1] is the for-
getting factor, also met in the RLS algorithm [10]. The poad
relations, imply that in order to construct the respectivbspace,
every node must have access to measurements coming out from
the other nodes of the network, something that is, in genéeral
feasible in distributed networks. However, it is not esktrtb
updateRy ., pr,» at every time instance; we assume, instead, that

2In [3], an extra step which was a projection ¢f, (n) onto a hyperslab
took place. Here, for simplicity purposes this step is ositt



Mk,n =

Fig. 1. lllustration of a hierarchical network with, = 5. The solid
lines denote the simple communication links, whereas ttehetikdotted
ones the hierarchical communication links. At every timstamt, nodes
have to transmit to their neighbourhodd coefficients. In addition to that,
at time instancen node1 transmits to node, u; ,/,di(n’), atn + 1,
Ug s, da(n’), atn+2, us v, ds(n') and atn + 3, ug ,,/, de(n’). Node2,
at time instancer, transmits t03, ug .7, d2(n’), uz 7, d7(n'). Atn +1,
Uy n's d1 (nl)7 ug n', ds(n/), atn + 2, Ug,n' d4(n/)7 U10,n’ dlo(n/)’ at
n+ 3, uz s, ds(n’), ug s, do(n’) and atn + 4, ug .7, de(n’). The rest
of the communications follow similar philosophy. The lagbandwidth is
needed for node and amounts td + 4, where D originates from theD
coefficients of the estimate and the rdsfrom the information needed to
construct the subspace.

Ky .. Furthermorejix(n) € [0, 2M.,] where

Yien—qr1wk,ilPs, 7.(4_71@("))—‘231‘-,(”)\\2 L~ n ~
Eien—g1 1983 Ps,  ($r(n)=dr(m)2’ if $e(n) & Mi=n—g41 Sk

1, otherwise.

©)
The complexity of the algorithm is of orde©(¢D) comingd from
(8), O(X) from the update of2,,,, p.,,, andO(DTm2) due to the
computation ofK,,, [4].

Claim1 Eg. (7) is equivalent to

br(n) = D crawi(n),

leEN},

wy(n+1) = Kn1 K (m(n) + pre(n) X

< Z UJk.,J'PS,CyjmKD(R;Z,,ﬁ;Z,)(¢k(n)) - ¢k(n)> )7

j=n—qg+1

and iz (n) € [0, 2M, ).

Rk,n, Pr,» Will be updated every. time in§tances and the approx- Proof: Proof is omitted due to lack of space.

imations, now, are given byR,m, = YRy -1 + uk,n,uf_,n,
and p s = VYPrw—1 + de(n)upn, With 0 = [F] + 1,
where | -| denotes the floor function. If one recalls that ,,, =
[uk,n’ Uk —1 - uk,n’—m+1]
a time window, of sizeL, the newly arriving information from
each node consists of two numbers;, ,,» and dx(n’), and this
information must be delivered to the other nodes of the netwo

Remark 1: From (7), it can be seen that the estimate transmitted
from the nodes, at every time instance, is of lenfth In the sim-
ulations section it will be verified that even a smallcan provide

T it can be readily seen that inside considerably good performance of the respective algorithm

Remark 2: Following a similar philosophy as in [4], it can be

proved that (7) track?l((’zlg R pry (W), Where withPI((’Z() R pry) W

denote the projection onto the subspace, inRienorm sense, in-

In order to improve the network’s flow, we adopt a hierarchi- stead ofw™.

cal model [6], in which the nodes are clustered, under a firezte
protocol, and we can classify them into two subclasses: igrah
chical and the non-hierarchical ones. The former are abt®mo-
municate over three hops, whereas the latter are not, amg eve-
hierarchical node is connected to a hierarchical one. Ameia
which illustrates how the information is distributed oviee hetwork

Theorem 2 Monotone Approximation: Assume that there exists a
non-negative integer, say, for which® =, ., Q. # 0 where
Qn = Kp(R,P) N, with Q= (2L, (Vi Sk
Then it holds that

can be seen in Fig. 1. Obviously, for a given network and a spe- [wn+1) —w,| <[wn) —w,.l, Yn > no,
cific value of L, different scenarios can be adopted. The critical . T v
point is that the information related to the updatesRfandp/, Wherew, = [wy ... w;] € R"™, Vw. € Q andw(n) =

can be spread ovel, thus reducing the bandwidth demand. Now, [w{ (n).. .wﬁ(n)f € RN™. The previous inequality states that

assume thafk,, is am x D matrix’, whose columns form an or-
thonormal basis oK p (R/,./, /), With R,y = £ SN Ry v
andp,, = &S0 P It holds thatvaw € Kp(R' ., pl)
there existapv € RP s.t. w = KX w. The resulting algorithm in
the lower dimension space is

dr(n) = Z ceawi(n) = Z ek Ko wi(n),

leN 1eN,
Wi (n+ 1) = i(n) + fir(n)x

< Y. wkiPs, (ds(n) — ¢~>k(n)> ; ®)

j=n—q+1

@)

whereSy., = {w € R” : |di(n) — 4} | < e}, With @k, =

3This is constructed locally, with the Gram-Schmidt method.

every iteration leads us closer to the feasible region, tle inter-
section of the respective hyperslabs with the Krylov sutxspiotice
here, that we let a finite number of outliers not to share isgetion,
without affecting the convergence of the algorithm.

Asymptotic Consensus: As mentioned in section 2, a desir-
able property of distributed learning is consensus. Undher pre-
viously mentioned assumptions and if there existssuch that
R, = R, , Yn > n, andp), = p,,,, Yn > n; ° then asymptotic
consensus holds, i.e.,

lim ||lwk(n) —wi(n)|| =0, Vk,l€1,...,N.
n— o0

Strong Convergence: Let us define® := {z € RY™ : 2 =
[T ... vT]T, v € R™}. If the previously mentioned assumptions

4In a parallel processing environment, this complexity &rtapO (D).

5This assumption does not pose a problem to us, if the statisfi the
nodes remain unchanged, due to the fact that for a laigthe approxima-
tions of R, p’ will be good and it will not be essential for the subspace to
change.
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Fig. 2. Average MSE in the first experiment.

hold, and under some other mild assumptions, which are edhit
save space, there exiafs. € O such that

lim w(n) = w..

n— o0
Proof: The proof is omitted due to lack of space. This theorem state
that the algorithm, for the whole network, converges asyiglly
to a point, inR™™, which respects the consensus property. Further
more, the distance of the estimate occurring, at each noate, the
set of the desirable solutions, i.e., the intersection efghbspace
with the hyperslabs, tends to zeroras— oco. [

5. EXPERIMENTS

In this section, we present experiments within the systesntiti-
cation task, in order to study the performance of the dewslag-
gorithm. We compare the proposed algorithm with a modificati
of the algorithm given in (4), (5), denoted as subsampled MPS
(sAPSM), where each node, instead of transmitting the wesie
mate vector, at every time instance, transmits a subsét obeffi-
cients of it. Such a scenario falls within the spirit of paktipdating.
To be more specific, at time instantethe first D coefficients are
transmitted, at time instan& the coefficients#D + 1,...,#2D
and so on. In the first experiment we consider a distributed ne
work consisted ofN = 10 nodes and the unknown vector to be
estimated is of lengthn = 160. The standard deviation of the
noise, which is assumed to be zero-mean and Gaussian, rslgive
or = Vg x 0.1 whereay, € (0,0.5) under the uniform distribu-
tion. Furthermoreyu,n = TeUk,n—1 + Xk,n, Wherer, € (0,0.5)
and respects the uniform distribution, agg ,, is zero-mean Gaus-
sian with standard deviation equal to We also choosé® = 10
for the Krylov based algorithms and for the sSAPSM, and= 4,

€r = V2 X g, pr(n) M;”" for all the algorithms. Finally, the
combinerscy,; are chosen with respect to the Metropolis rule [1],
the experiments are averaged o¥80 experiments, for smoothing
purposes, and the comparative metric presented is thegav/btean
Square Error (MSE), i.ex S0, (d(n) — ui ,wk(n)) . In the
first experiment (Fig. 2) we lef = 1 and we alter the parameter
L. It can be seen that the smaller the update window, the ftser
convergence. This is expected, because for a small windowpwe
date the estimate of the subspace more often, and we reachrsoo
to a good approximation of it, compared to the case of a laxger
dow. Furthermore, it can be readily seen, that the Kryloselaal-
gorithms outperform significantly SAPSM. When the Krylowsbd
algorithms are compared with the standard APSM, i.e., fiafiesh-
sionality is used, we observe that there is a slight lossidbp®ance
with respect to the error floor, although the Krylov baseaathms
converge faster. In the second experiment (Fig. 3), thenpeters
remain the same as in the previous one, albeit-at 1800 the chan-
nel suddenly changes. This experiment takes place in codgreick
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Proposed y=0.99
APSM
SAPSM

Average MSE (dB)

"0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iteration Number

Fig. 3. Average MSE in the second experiment.

the tracking ability of the proposed algorithm. Now, we fix= 1
and we altery. From Fig. 3 it can be seen that until the channel
changes, the best performance is achievedyfer 1 whereas for
smallery the steady state error floor is increased. However, as in the
RLS case [10], ify = 1, the algorithm has a long memory of the old
§ubspace that has to change and its tracking ability is nod.g®n
the contrary, the other choices pfprovide a good tracking ability.
Of course for largel, the tracking ability may be affected. How-
ever, different scenarios can be considered, which willfesgnted
elsewhere due to lack of space.

6. CONCLUSIONS

A novel algorithm, for bandwidth reduction in adaptive igag in
diffusion networks, is introduced in the framework of setdletic
estimation. To achieve this reduction, the estimates ameedbdto
lie in a lower dimension Krylov subspace. The results shoat th
substantial bandwidth reduction can be achieved at thensepef
only slight performance degradation, with respect to therdtoor.
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