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Formulation

Let Ω be filled with a bianisotropic material.

Bianisotropic materials: optically active, meaning they can twist the
polarization of light in either refraction or transmission. This is a
consequence of the fact that electric and magnetic fields are coupled.

We consider the most general case of a linear medium where the
constitutive relations are

D = εE + ξH, (1)

B = ζE + µH. (2)

ε, ξ, ζ and µ: 3× 3 matrices, having as entries complex functions of the
position vector r and the angular frequency ω.
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Formulation

In the six vector notation, the problem is stated as follows:

iω

[
ε ξ
ζ µ

]
e =

[
0 curl

− curl 0

]
e, (3)

and can be considered as a generalized eigenvalue problem, where ω acts
as the eigenvalue and e := (E ,H)T as the eigenvector.

Remark: The matrix in the left hand side depends on the eigenvalue ω.
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Formulation

The formal eigenvalue problem under consideration is written as

Qe = ωM(ω)e. (?)

where

M = M(ω) :=

[
ε ξ
ζ µ

]
,

is the material matrix and

Q := i

[
0 curl

− curl 0

]
is the (formally self-adjoint) Maxwell operator.
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The Mathematical Problem

We are now going to formulate (?) in a Hilbert space setting. We focus in
the case of a cavity, and more precisely,

Assumption 1

Ω is a bounded Lipschitz domain in R3.

We further assume that the “wall” Γ := ∂Ω is perfect conducting,

Assumption 2

n̂ × E = 0 on Γ.
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The Mathematical Problem

The domain of Q is

D(Q) := H0(curl ; Ω)× H(curl ; Ω).

and X := L2(Ω;C3)× L2(Ω;C2).

Proposition 1

Q is a selfadjoint operator.

Assumption 3

The entries of ε, ξ, ζ and µ are L∞(Ω) functions (with respect to r).

Corollary 1

M defines a bounded multiplication operator on X.

Proposition 2

H1(Ω) ↪→ L2(Ω) with a compact injection.

Eftychia Argyropoulou (UoA) The eigenvalue problem for a bianisotropic cavity 12–15 August 2012 6 / 21



The Mathematical Problem

The domain of Q is

D(Q) := H0(curl ; Ω)× H(curl ; Ω).

and X := L2(Ω;C3)× L2(Ω;C2).

Proposition 1

Q is a selfadjoint operator.

Assumption 3

The entries of ε, ξ, ζ and µ are L∞(Ω) functions (with respect to r).

Corollary 1

M defines a bounded multiplication operator on X.

Proposition 2

H1(Ω) ↪→ L2(Ω) with a compact injection.

Eftychia Argyropoulou (UoA) The eigenvalue problem for a bianisotropic cavity 12–15 August 2012 6 / 21



The Mathematical Problem

The domain of Q is

D(Q) := H0(curl ; Ω)× H(curl ; Ω).

and X := L2(Ω;C3)× L2(Ω;C2).

Proposition 1

Q is a selfadjoint operator.

Assumption 3

The entries of ε, ξ, ζ and µ are L∞(Ω) functions (with respect to r).

Corollary 1

M defines a bounded multiplication operator on X.

Proposition 2

H1(Ω) ↪→ L2(Ω) with a compact injection.

Eftychia Argyropoulou (UoA) The eigenvalue problem for a bianisotropic cavity 12–15 August 2012 6 / 21



The Mathematical Problem

The domain of Q is

D(Q) := H0(curl ; Ω)× H(curl ; Ω).

and X := L2(Ω;C3)× L2(Ω;C2).

Proposition 1

Q is a selfadjoint operator.

Assumption 3

The entries of ε, ξ, ζ and µ are L∞(Ω) functions (with respect to r).

Corollary 1

M defines a bounded multiplication operator on X.

Proposition 2

H1(Ω) ↪→ L2(Ω) with a compact injection.

Eftychia Argyropoulou (UoA) The eigenvalue problem for a bianisotropic cavity 12–15 August 2012 6 / 21



The Mathematical Problem

The domain of Q is

D(Q) := H0(curl ; Ω)× H(curl ; Ω).

and X := L2(Ω;C3)× L2(Ω;C2).

Proposition 1

Q is a selfadjoint operator.

Assumption 3

The entries of ε, ξ, ζ and µ are L∞(Ω) functions (with respect to r).

Corollary 1

M defines a bounded multiplication operator on X.

Proposition 2

H1(Ω) ↪→ L2(Ω) with a compact injection.

Eftychia Argyropoulou (UoA) The eigenvalue problem for a bianisotropic cavity 12–15 August 2012 6 / 21



The Mathematical Problem

The spectrum of Q is discrete and consists of a sequence of eigenvalues
with no accumulation point.

Actually, the non-zero eigenvalues of Q, appear as a bilateral sequence
(ω0

n)n∈Z∗ .

(ω0
n)n∈N∗ is an increasing sequence of non-negative numbers, thus

diverging at infinity, and ω0
−n = −ω0

n.

Each ω0
n, n 6= 0, is counted as many times as its multiplicity.

ω0
0 := 0 is always an eigenvalue but needs a special treatment, since the

kernel kerQ is infinite dimensional.
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The Mathematical Problem

Let us now focus on the corresponding eigenvectors.

To each ω0
n, n = 1, 2, ..., corresponds one normalized eigenvector

en := (En,Hn)T , which is obtained by solving an eigenvalue problem for
the negative vector Laplacian.

The eigenvector for ω0
−n = −ω0

n is then given by e0−n = (En,−Hn)T .

Remark: Eigenvectors corresponding to different eigenvalues are
orthogonal, so (e0n)n∈Z∗ can be chosen as an orthonormal sequence.
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The Mathematical Problem

Let now H := [..., e−n, ..., e−2, e−1, e1, e2, ..., en, ...].
The restriction of Q on H is denoted by QH. QH is both the restriction
and the part of Q on H. Actually, it is the spectrum of QH that is discrete
and one can strictly prove that.

Proposition 3

QH is a self-adjoint operator in H and has compact inverse Q−1H . The
sequence of eigenvalues of QH is (ω0

n)n∈Z∗ and the sequence of the
corresponding eigenvectors is (e0n)n∈Z∗ . The latter is an orthonormal basis
for H.
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The Mathematical Problem

Then (?) is restricted in H and is written e = ωQ−1H M(ω)e.

Let F(ω) := ωQ−1H M(ω); we then conclude to the eigenvalue problem for a
linear pencil

(I − F(ω))e = 0 (4)

F(ω): is a compact operator in X.
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The abstract framework

Consider an open and connected set D ⊂ C and an operator-valued
function F : D → B(X ).

Definition 2

An ω is called eigenvalue of the pencil I − F (·) if the equation F (ω)x = x
has non trivial solutions. A non trivial solution of F (ω)x = x ω ∈ S , is
called an eigenvector corresponding to ω and the linear span of the
eigenvectors is called the eigenspace corresponding to ω.

Eftychia Argyropoulou (UoA) The eigenvalue problem for a bianisotropic cavity 12–15 August 2012 11 / 21



The abstract framework

Consider an open and connected set D ⊂ C and an operator-valued
function F : D → B(X ).

Definition 2

An ω is called eigenvalue of the pencil I − F (·) if the equation F (ω)x = x
has non trivial solutions. A non trivial solution of F (ω)x = x ω ∈ S , is
called an eigenvector corresponding to ω and the linear span of the
eigenvectors is called the eigenspace corresponding to ω.

Eftychia Argyropoulou (UoA) The eigenvalue problem for a bianisotropic cavity 12–15 August 2012 11 / 21



The abstract framework

We have the following important result

Proposition 4 (Analytic Fredholm Alternative)

Let F be analytic and F (ω) ∈ K(X ) for all ω ∈ D. Then
either
a) I − F (ω) is not injective for every ω ∈ D,
or
b) (I − F (ω))−1 ∈ B(X ) for all ω ∈ D\S, where S ⊂ C is a countable set
without any limit point.

Remark: In case (b), the operator-valued function (I − F (·))−1 is analytic
in D\S , meromorphic in D and the residues at the poles are finite rank
operators.
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The abstract framework

We now focus in the special case F (ω) := AB(ω), ω ∈ D, where A is
compact self-adjoint and B(ω) ∈ B(X ). We treat the equation in an
abstract sense in an arbitrary seperable Hilbert space X.

The spectral theorem ensures that A is represented as

Ax =
∑
n

λn
〈
x , e0n

〉
e0n , (5)

where (λn) is the sequence of (non-zero real) eigenvalues of A, in an
absolutely descending order and counted as many times as their
multiplicity, and (e0n) is the sequence of corresponding eigenvectors.

The latter is an orthonormal basis for R(A). Here we assume that A has
infinitely many eigenvalues and thus λn → 0.
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The abstract framework

The problem F (ω)x = x , i.e., AB(ω)x = x , since x ∈ R(A), can now be
written as

∑
n

λn
〈
B(ω)x , e0n

〉
e0n =

∑
n

〈
x , e0n

〉
e0n ,

or, equivalently, as∑
n

λn

〈
x ,

(
B(ω)− 1

λn
I

)∗
e0n

〉
e0n = 0. (6)

Let fn = fn(ω) :=
(
B(ω)− 1

λn
I
)∗

e0n =
(
B(ω)∗ − 1

λn
I
)
e0n . The LHS of

(6) is a multiplier operator

S = S(ω) :=
∑
n

λn 〈·, fn〉 e0n ,

corresponding to sequences (λn) ⊂ R, (fn) ⊂ X , (en) ⊂ X , where (λn) is
bounded, (fn) is a sequence and (en) is an orthonormal basis.
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The abstract framework

Proposition 5

The following are equivalent:
a) S is injective.
b) (fn) is a complete sequence, i.e., [f1, f2, ..., fn, ...] = X.
c) 〈x , fn〉 = 0 for every n, implies x = 0.

Corollary 3

ω is an eigenvalue of I − F (·) if and only if the sequence (fn(ω)) is not
complete. The corresponding eigenspace is ker S(ω). Moreover,
x ∈ ker S(ω) if and only if 〈x , fn(ω)〉 = 0 for every n and, consequently,

ker S(ω) = [f1(ω), f2(ω), ..., fn(ω), ...]⊥ .
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The inverse problem

Let us now consider the inverse problem, that is to reconstruct the
operator B(·) from the knowledge of the eigenelements of the problem
F (ω)x = x . Actually, let us assume that ω is an eigenvalue with
corresponding eigenspace ker S(ω). Then

ker S(ω)T = [f1(ω), f2(ω), ..., fn(ω), ...],

and assume that there is a way to calculate the sequence (fn(ω)).

The straightforward relation〈
B(ω)e0n , e

0
m

〉
=
〈
e0n , fm(ω)

〉
+
δnm
λn

, (7)

(δnm stands for the Kronecker delta) allows the recovery of the operator
B(ω).
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Eigenfrequencies and modes of the bianisotropic cavity

We now return to problem

(I − F(ω))e = 0 (8)

where F(ω) := ωQ−1H M(ω).

Assumption 4

M is an analytic function D 3 ω 7→ M(ω) ∈ B(X), where D is a domain in
the complex plane, such that 0 ∈ D.

Consequently, F defines an analytic function D 3 ω 7→ F(ω) ∈ K(X).

Moreover, for ω0 = 0, F(ω0) = 0 and thus I − F(ω0) is invertible.
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Eigenfrequencies and modes of the bianisotropic cavity

The Analytic Fredholm Alternative then gives

Proposition 6

The pencil I − F(·) has countably many eigenvalues with finite
dimensional corresponding eigenspaces. They form a sequence (ωn) of
non-zero complex numbers, diverging at infinity.

ωn: an eigenfrequency of the cavity
The above result reveals that such frequencies exist and are countably
many.

The eigenvectors corresponding to an eigenfrequency ωn are called the
corresponding modes.
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Eigenfrequencies and modes of the bianisotropic cavity

Let now A := Q−1H , B(ω) := ωM(ω).
The eigenvalues of A are calculated as follows

λn :=
1

ω0
n

, n = ±1,±2, ...,

and the sequence of the corresponding eigenvectors is again (en).

Consequently, one has the expansion

Ax =
∞∑

n=−∞
λn
〈
x, e0n

〉
e0n.

Now F(ω) = AB(ω) and it is reformulated with the aim of the multiplier
operator

Sx = S(ω)x :=
∞∑

n=−∞
λn 〈x, fn〉 e0n,

where

fn = fn(ω) :=

(
B(ω)− 1

λn
I

)∗
e0n =

(
ω̄M(ω)∗ − ω0

nI
)

e0n , n = ±1,±2, ....
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Eigenfrequencies and modes of the bianisotropic cavity

Proposition 7

ω 6= 0 is an eigenfrequency of the cavity if and only if S(ω) is not an
injective operator, if and only if (fn(ω)n∈Z∗ is not complete. The
corresponding subspace of modes is finite dimensional and is given by

ker S(ω) = [, ..., f−n(ω), ..., f−2(ω), f−1(ω), f1(ω), f2(ω), ..., fn(ω), ...]⊥ .

Moreover, the following equality applies〈
M(ω)e0n, e

0
m

〉
= ω0

n

〈
e0n , fm(ω)

〉
+ δnm,

from which the material matrix can be recovered.
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Thank you!
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