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Abstract—A 3D landmark detection method for 3D facial scans is presented and thoroughly evaluated. The main contribution of the

presented method is the automatic and pose-invariant detection of landmarks on 3D facial scans under large yaw variations (that

often result in missing facial data), and its robustness against large facial expressions. Three-dimensional information is exploited by

using 3D local shape descriptors to extract candidate landmark points. The shape descriptors include the shape index, a continuous

map of principal curvature values of a 3D object’s surface, and spin images, local descriptors of the object’s 3D point distribution.

The candidate landmarks are identified and labeled by matching them with a Facial Landmark Model (FLM) of facial anatomical

landmarks. The presented method is extensively evaluated against a variety of 3D facial databases and achieves state-of-the-art

accuracy (4.5-6.3 mm mean landmark localization error), considerably outperforming previous methods, even when tested with the

most challenging data.

Index Terms—Face models, landmark detection, shape index, spin images
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1 INTRODUCTION

IN a wide variety of disciplines, it is of great practical
importance to measure, describe, process, and compare

the shapes of objects; these tasks can be greatly facilitated by
using landmark points. In biometric applications, computer
vision, and computer graphics, the class of objects is often
the human face. Three-dimensional facial landmark detec-
tion can be used for face registration, face recognition, facial
expression recognition, facial shape analysis, segmentation
and labeling of facial parts, facial region retrieval, partial
face matching, facial mesh reconstruction, face relighting,
face synthesis, face animation, and motion capture. Thus, in
almost any application that requires processing of 3D facial
data, an initial registration, based on the landmark points’
correspondence, is necessary in order to make a system fully
automatic [1], [2]. The landmark detector must be pose
invariant in order to allow the registration of both frontal
and side facial scans [3], [4], [2], [5].

Even though existing 3D landmark detection methods
claim pose invariance, they fail to address large pose
variations (Section 2). The main assumption of these
methods is that even though the head can be rotated with
respect to the sensor, the entire face is always visible.
However, this is true only for “almost frontal” scans or
“reconstructed” complete facial meshes. Side scans usually
have large missing areas, due to self-occlusion, and the size of the
missing areas depends on the amount of pose variation. These
scans are very common in realistic scenarios such as in the
case of imaging under uncontrolled conditions.

In this paper, we present a method to automatically
detect landmarks (eye and mouth corners, nose, and chin
tips) on 3D facial scans that exhibit yaw and expression
variations. The main contribution of the presented method
is its applicability to large yaw variations (up to 82 degrees)
that often result in missing (self-occluded) facial data, and
its tolerance against varying facial expressions in an holistic
way with high success rates.

In the training phase, a Facial Landmark Model (FLM)
representing the landmark positions is created (Fig. 1h),
shape index target values for each landmark are computed
(Fig. 1f), and spin image templates for each landmark are
generated (Fig. 1g). In the detection phase, the algorithm
first detects candidate landmarks on the probe facial
datasets, by exploiting the 3D geometry-based information
of shape index and spin images (Figs. 1a, 1b, and 1c). The
extracted candidate landmarks are then filtered out and
labeled by matching them with the FLM (Figs. 1d and 1e).

The presented method is evaluated by computing the
distance between manually annotated landmarks (ground
truth) and the automatically detected landmarks. The
experiments have been carried out on two of the largest
publicly available databases containing facial datasets:
FRGC v2 [6], [7] and the UND Ear Database [8]. The first
database contains frontal facial scans with varying expres-
sions, while the second contains side facial scans (both left
and right) with up to 82 degrees yaw rotation.
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In previous work, we have introduced methods for
detecting landmarks on 3D facial scans [3], [4], [2], but the
aim of these papers was face segmentation, registration,
and recognition; 3D landmark detection was thus a very
small part which was briefly presented and not thoroughly
evaluated. This paper builds on our previously published
work, but focuses solely on 3D facial landmark detection,
introducing several novelties that lead to state-of-the-art
landmark detection results. The method presented in this
paper achieves high landmark detection rates in databases
that contain faces with large yaw and expression variations
(Tables 5 and 2). We also present detailed analytical
comparative results against existing state-of-the-art meth-
ods (Tables 3 and 4).

In addition to previously published work, here we use
FLMs, shape index target values, and spin image templates
that are trained from a specific subset of the FRGC v2 database
that contains 300 facial scans with varying expressions that
are not used in the evaluation experiments (Fig. 11). The
inclusion of facial expressions into the FLMs and the use of
separate shape index target values for each individual
landmark resulted in an improved landmark detection
accuracy (by up to 28 percent) and an improved landmark
detection rate (by up to 16 percent) compared to the results
that were obtained in our previous work [2] (Tables 3 and 4).

The rest of this paper is organized as follows: Section 2
describes related work in the field, Sections 3 and 4 detail
the presented method, Section 5 presents our results, and
Section 6 summarizes our method.

2 RELATED WORK

Development of 3D modeling and digitizing techniques has
sparked research interest in 3D facial feature extraction
for landmark detection and is reported in a number of
publications.

Professor Jain’s group [9], [10], [11], [12], [13] presented
methods to locate the positions of eye and mouth corners,
and nose and chin tips, based on a fusion scheme of shape

index [14] on range maps and the “cornerness” response
[15] on intensity maps. They also developed a heuristic
method based on cross-profile analysis to locate the nose
tip more robustly. In contrast to our approach, candidate
landmark points were filtered out using a static (non-
deformable) statistical model of landmark positions. The
3D feature extraction method presented in [10] addressed
the problem of pose variations and was tested against a
composite database consisting of 953 scans from the FRGC
database and 160 scans from a proprietary database with
frontal scans, extended with variations of pose, expres-
sions, occlusions, and noise. Their multimodal algorithm
[9] used 3D+2D information and was applicable to almost-
frontal scans (< 5 degrees yaw rotation). It was tested
against the FRGC database with 946 near frontal scans. The
3D feature extraction method presented in [11] also
addressed the problem of pose variations, and was tested
against the FRGC database with 953 near frontal scans
along with their proprietary MSU database consisting of
300 multiview scans (0, �45 degrees) from 100 subjects.
Results of methods [9], [11], [13] are presented in Table 3,
and of method [11] in Table 4.

Conde et al. [16] introduced a global face registration
method by combining clustering techniques over discrete
curvature and spin images for the detection of eye inner
corners and of the nose tip. The method was tested on a
proprietary database of 714 scans (51 subjects with
14 captures each), with small pose variations (< 15 degrees
yaw rotation). Although they presented a feature localiza-
tion success rate of 99.66 percent on frontal scans and
96.08 percent on side scans, they did not define what
constitutes a successful localization.

Xu et al. [17] presented a feature extraction hierarchical
scheme to detect the positions of the nose tip and nose
ridge. They introduced the “effective energy” notion to
describe the local distribution of neighboring points of nose
tips and a Support Vector Machine classifier to select the
correct nose tips. Although it was tested against various
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Fig. 1. Process pipeline of landmark detection: (a) shape index map, (b) shape index’s candidate landmarks, (c) spin image similarity filtering,
(d) extracted landmark sets consistent with FLM, (e) resulting optimal landmark set, (f) shape index target values, (g) spin image templates, and
(h) FLM.



databases, exact landmark localization results were not
provided.

Lin et al. [18] introduced a coupled 2D and 3D feature
extraction method to determine the positions of eye sockets
by using curvature analysis. The nose tip is considered to be
the extreme vertex along the normal direction of eye
sockets. The method was tested on 27 faces with various
poses and expressions in an automatic 3D face authentica-
tion system.

Segundo et al. [19] introduced a face and facial feature
detection method by combining 2D face segmentation on
depth images with surface curvature information in order
to detect the eye corners, nose tip, nose base, and nose
corners. Although they claimed over 99.7 percent correct
detections on the FRGC v2 database, they did not provide a
definition of what a correct detection is. Additionally, nose
and eye corner detection was not robust under significant
pose variations (>15 degrees yaw and roll).

Wei et al. [20] introduced a nose tip and nose bridge
localization method, based on a Surface Normal Difference
algorithm and shape index estimation in order to determine
the facial pose in pose-variant systems. They reported an
angular error of the nose tip—nose bridge segment less than
15 degrees in 98 percent of the 2,500 datasets of the BU-3DFE
database.

Mian et al. [21] introduced a heuristic method for nose
tip detection that was based on a geometric analysis of the
nose ridge contour. It was used in a face recognition system
to pose correct the facial data. However, no clear localiza-
tion error results were presented. Additionally, their nose
tip detection algorithm had limited applicability to near
frontal scans (<15 degrees yaw and pitch).

Faltemier et al. [22] introduced a heuristic method for
nose tip detection, a fusion of curvature and shape index
analysis, and of template matching using the Iterative
Closest Point registration algorithm. The nose tip detector
had a localization error less than 10 mm in 98.2 percent of
the 4,007 facial datasets of FRGC v2 where it was tested.
However, no exact landmark localization results were
provided. They also introduced a method called “Rotated
Profile Signatures” [23], based on profile analysis, to
robustly locate the nose tip in the presence of pose,
expression, and occlusion variations. Their method was
tested against the NDOff2007 database [8], which contains
7,317 facial scans, 406 frontal and 6,911 in various yaw and
pitch angles. They reported a 96 to 100 percent success rate,
with distance error threshold 10 mm, under significant yaw
and pitch variations. Although their method achieved high
success rates, it was limited to the detection of the nose tip
only, for which exact localization distance error results were
not presented. In addition, it is a 2D-assisted 3D method
since it uses skin segmentation to eliminate outliers.

Dibeklio�glu et al. [24], [25] presented methods for
detecting facial features on 3D facial datasets to enable pose
correction under significant pose variations. They intro-
duced a statistical method to detect facial features, based on
training a model of local features, from the gradient of the
depth map. The method was tested against the FRGC v1 and
the Bosphorus databases, but data with pose variations were
not considered. They also introduced a nose tip localization
and segmentation method using curvature-based heuristic
analysis that was tested against the Bosphorus database,
which consists of 3,396 facial scans obtained from 81 subjects.

However, the proposed system exhibited limited capabilities
on facial datasets with yaw rotations greater than 45 degrees.
In addition, no exact landmark localization distance error
results were presented.

Yu and Moon [26] presented a nose tip and eye inner
corners detection method on 3D range maps. The landmark
detector was trained from example facial data using a
genetic algorithm and was applied on 200 almost-frontal
scans from the FRGC v1 database. However, a limitation of
that system is that it is not applicable to facial datasets with
large yaw rotations since the three aforementioned control
points-landmarks (nose tip and eye inner corners) that were
used are not always visible. Results of the method are
presented in Table 3.

Romero-Huertas and Pears [27] presented a graph
matching approach to locate the positions of nose tip and
inner eye corners. They introduced the “distance to local
plane” notion to describe the local distribution of neighbor-
ing points and detect convex and concave areas of the face.
After the graph matching algorithm eliminated false
candidates, the best combination of landmark points was
selected, based on the minimum Mahalanobis distance to
the trained landmark graph model. The method was tested
against the FRGC v1 (509 scans) and FRGC v2 (3,271 scans)
databases. They reported a success rate of 90 percent with
thresholds for the nose tip at 15 mm and for the inner eye
corners at 12 mm, but exact landmark localization distance
error results were not presented.

Nair and Cavallaro [28] presented a method for
detecting facial landmarks on 2.5D scans. Their method
used the shape index and the curvedness index to extract
candidate feature points. A statistical shape model (Point
Distribution Model) of feature points is fitted to the facial
dataset dataset by using three landmark points (nose tip
and left and right inner eye corners) for coarse registration,
and the rest for fine registration. The localization accuracy
of the landmark detector was assessed using the BU-3DFE
facial database, which contains only complete frontal facial
datasets reconstructed from scans captured at �45 degrees
of yaw [29]. Furthermore, their method is not applicable to
missing data resulting from pose self-occlusion since it
always uses the aforementioned three landmark points
(nose tip and eye inner corners) for model fitting, which are
not always visible. Results of the method are presented in
Table 3.

3 3D FACIAL LANDMARK MODEL

We use a set of eight anatomical landmarks (Fig. 1h):

1. right eye outer corner (REOC),
2. right eye inner corner (REIC),
3. left eye inner corner (LEIC),
4. left eye outer corner (LEOC),
5. nose tip (NT),
6. mouth right corner (MRC),
7. mouth left corner (MLC), and
8. chin tip (CT).

Note that five of these points are visible on profile and
semiprofile face scans. Hence, the complete set of eight
landmarks can be used for frontal and almost-frontal faces
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and two reduced sets of five landmarks (right and left) for

semiprofile and profile faces. The right side landmark set

and the left side landmark set contain the points (1, 2, 5, 6, 8)
and (3, 4, 5, 7, 8), respectively.

Each of these sets of landmarks constitutes a correspond-

ing FLM. Henceforth, the model of the complete set of eight

landmarks will be referred to as FLM8 and the two reduced

sets of five landmarks (left and right) as FLM5L and

FLM5R, respectively.

3.1 The Landmark Mean Shape

The mathematical representation of an n-point landmark

shape in d dimensions can be defined by concatenating all
landmark point coordinates into a k ¼ nd vector and

establishing a Shape Space [30], [31], [32]. The vector

representation for 3D landmark shapes would then be

x ¼ ½px;1; . . . ; px;n; py;1; . . . ; py;n; pz;1; . . . ; pz;n�T ; ð1Þ

where (px;i; py;i; pz;i) represent the 3D coordinates of

n landmark points.
Since shape has to be invariant to 3D euclidean similarity

transformations, translational, scale, and rotational effects
need to be filtered out. This procedure is commonly known

as Procrustes Analysis, and is performed by minimizing the

Procrustes distance DP :

D2
P ¼ jxi � xmj2 ¼

Xk
j¼1

ðxij � xmjÞ2; ð2Þ

between each example shape xi and the mean shape xm.

Although there are analytic solutions, a typical iterative

approach is used [5] by which the mean shape of

landmark shapes (Fig. 2) is computed and example shapes

are aligned to it. The resulting mean shape xm is the
Procrustes mean:

xm ¼
1

N

XN
i¼1

xi ð3Þ

of all N example shapes xi. Since this is an iterative process,

the example shapes xi are aligned in each iteration step to
the current mean shape xm [5].

The mean shape for each landmark model (FLM8,

FLM5L, and FLM5R) is computed from a manually

annotated training set of 300 frontal facial scans of

different subjects with varying expressions, which are

chosen from the FRGC v2 database subset I (Fig. 11).
Training the FLMs with expressions allows the fitting

procedure (Section 3.3) to capture candidate landmarks on

faces exhibiting expressions.

Note that in our case, where the size of the facial
landmark shape is of great importance, scaling shapes to
unit size is omitted. In such cases, the shapes are aligned by
performing only the translational and rotational transfor-
mations. Thus, we use facial landmark distances as
constraints that are incorporated during the training phase
into the model.

3.2 Landmark Shape Variations

After bringing landmark shapes into a common frame of
reference and computing the landmarks’ mean shape,
further analysis can be done to describe the shape
variations. Since facial landmark points represent a certain
class of shapes, aligned shape vectors form a specific
distribution in the nd-dimensional shape space, which can
be modeled by applying PCA to the aligned shapes [30],
[31], [32], [33].

Hence, if A contains (in columns) the p eigenvectors Ai

corresponding to the p largest eigenvalues, �i, of the
covariance matrix Cx of the aligned original example shape
vectors, the Facial Landmark Model (FLM) is created [3], [4],
[2], [5] and is represented by the set fxm;Ai; �ig, with
i 2 f1; . . . ; pg.

The number p of most significant eigenvectors and
eigenvalues to retain (modes of variation) can be chosen so
that the model represents a given proportion f of the total
variance of the data Vt:

Xp
i¼1

�i � f � Vt; Vt ¼
Xk
i¼1

�i: ð4Þ

Shape deformations x0 can be modeled by a p-dimensional
vector b of parameters, which represents the principal modes
of variation:

x0 ¼ xm þA � b: ð5Þ

By setting bi ¼ �3
ffiffiffiffiffi
�i
p
¼ �3�i and all the other bj ¼ 0 we

obtain the extreme shape deformations for each mode of
variation i [5], which represents fi ¼ �i

Vt
of the total shape

variations of the training datasets [30], [32], [33].
The first mode captures the face size and shape (circular

versus oval) and represents 30.6 percent of the total shape
variations of FLM8 (Fig. 3). The second mode captures the
nose shape (peaked versus flat) and represents 18.8 percent
of the total shape variations of FLM8 (Fig. 4). The third
mode captures the chin movement (down versus up) due to
open mouth and close mouth expressions and represents
9.6 percent of the total shape variations of FLM8 (Fig. 5).

We incorporated 14 eigenvalues (out of the total 24) in
FLM8, and seven eigenvalues (out of the total 15) in FLM5L
and FLM5R, which represent 99.0 percent of the total shape

PERAKIS ET AL.: 3D FACIAL LANDMARK DETECTION UNDER LARGE YAW AND EXPRESSION VARIATIONS 1555

Fig. 2. Depiction of: (a) unaligned landmarks, (b) aligned landmarks,
(c) landmarks’ mean shape, and (d) landmark clouds and mean shape at
60 degrees. Fig. 3. First mode of FLM8 deformations at 0 degrees.



variations of each model. The least significant eigenvalues
that are not incorporated into the FLMs are considered to
represent noise [32], [34].

The principal modes represent the marginal deforma-
tions of the landmark model (FLM), which are described by
the deformation parameters bi. These are used to establish
whether a detected landmark shape is plausible or not
(Section 3.3) and for computing the distance constraints of
every pair of landmarks (Section 4.3). Note that facial size is
incorporated into the FLM by the first deformation
parameter b1. If scale normalization was applied, then size
would not be incorporated into the FLM. Thus, at the
detection phase, candidate landmark shapes consisting of
outlier points (located on the hair or shirt), which are of
“small sizes,” would eventually be considered as plausible,
resulting in more false detections.

3.3 Fitting Landmarks to the FLM

General-purpose feature detection methods are not capable
of identifying and labeling the detected candidate land-
marks; some topological properties of faces must be taken
into consideration. To address the problem of labeling the
detected landmarks, we use the FLMs. Candidate land-
marks, irrespective of the way they are produced, must be
consistent with the corresponding FLM. This is accom-
plished by fitting a candidate landmark set to the FLM and
checking if the deformation parameters b fall within certain
margins [32], [33].

Fitting a set of landmark points y to the FLM fxm;Ai; �ig
is done by minimizing the Procrustes distance jy� xmj in a
simple iterative approach [5]. Then, by projecting y onto the
shape eigenspace, its deformation parameters b are
determined as

b ¼ AT � ðy� xmÞ: ð6Þ

We consider a landmark shape y as plausible if it is
consistent with the marginal FLM deformations. Considering
that certain bi of y satisfy the deformation constraint
jbij � 3

ffiffiffiffiffi
�i
p

, then the candidate landmark shape y belongs
to the shape class with probability

PrðyÞ ¼
P
�i

Vp
; ð7Þ

where �i are the eigenvalues that satisfy the deformation
constraints and Vp is the sum of the eigenvalues that are
incorporated into the FLM. If PrðyÞ exceeds a certain
threshold value, the landmark shape is considered plau-
sible; otherwise it is rejected as a member of the class. The
threshold value is set to 0.99 so that only the weakest
eigenvalue deformations may not be satisfied since they can
be considered as noise.

4 LANDMARK DETECTION AND LABELING

To detect landmark points, we have used two 3D local
shape descriptors that exploit the 3D geometry-based
information of facial datasets: shape index and spin images.
A facial scan belongs to a subclass of 3D objects which can
be considered as a surface S expressed in a general
parametric form with native u; v parameterization that
allows us to map 3D information into 2D space. Since
differential geometry is used for describing the local
behavior of surfaces (such as surface curvature and surface
normals), we assume that the surface S can be adequately
modeled as being at least piecewise smooth. Therefore, to
eliminate sensor-specific problems such as white noise,
spikes, and holes (especially in areas like the eyebrows and
the eyes), certain preprocessing algorithms (median cut, hole
filling, smoothing, and subsampling) operate directly on the
range data before the conversion to polygonal data [1], [2].

4.1 Shape Index

The Shape Index [14], [35] is extensively used for 3D landmark
detection [13], [11], [12], [10], [9]. It is a continuous mapping of
principal curvature values ðkmax; kminÞ of a 3D object point p
into the interval ½0; 1�, and is computed as

SIðpÞ ¼ 1

2
� 1

�
tan�1 kmaxðpÞ þ kminðpÞ

kmaxðpÞ � kminðpÞ
: ð8Þ

The shape index captures the intuitive notion of “local”
shape of a surface. Five well-known shape types and their
shape index values are: Cup ¼ 0:0, Rut ¼ 0:25, Saddle ¼ 0:5,
Ridge ¼ 0:75, and Cap ¼ 1:0.

The shape index is computed from the principal
curvature values of the surface spanned by the nearest
neighbors of each vertex, a region of 5.5 mm radius on
average. After computing the shape index values on a 3D
facial dataset, a u; v mapping is performed in order to create
a shape index map SImap (Fig. 6a):

SImapðu; vÞ  SIðx; y; zÞ: ð9Þ

To locate interest points on the shape index map, we
compute shape index target values that represent the
landmarks used. Due to the symmetric nature of the face,
shape index target values can represent only five landmark
classes (without the distinction of left/right): the eye outer
corner, eye inner corner, nose tip, mouth corner, and chin
tip landmarks. Shape index target values are statistically
generated from 300 manually annotated frontal face scans
of different subjects from the FRGC v2 database, subset I
(Fig. 11), with varying expressions. The shape index target
values for each landmark class are obtained from the mode
of the distribution of the shape index values of the
associated landmark (Fig. 1f). These values are: 1.00 for

1556 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 7, JULY 2013

Fig. 4. Second mode of FLM8 deformations at 70 degrees. Fig. 5. Third mode of FLM8 deformations at 60 degrees.



nose tips, 0.90 for chin tips, 0.32 for mouth corners, 0.32 for
eye outer corners, and 0.16 for eye inner corners. The shape
index candidate landmarks that are located for each class
are kept in five lists sorted in descending order of
significance according to their absolute difference from
the corresponding shape index target values. The most
significant subset of points from each list is retained (a
maximum of 1,024 points for each landmark class) (Fig. 7).

However, our experiments indicated that the shape index
alone is not sufficiently robust for detecting landmarks on
facial datasets in a variety of poses and expressions (the
candidate landmarks are too many, having a large number
of outliers that lead to false detections). Thus, candidate
landmarks located from the shape index values serve as a
basis, but are further classified and filtered out (Fig. 7).

4.2 Spin Images

A Spin Image [36] encodes the coordinates of points on the
surface of a 3D object with respect to a so-called oriented
point ðp;nÞ, where n is the normal vector at a point p of a 3D
object surface. A spin image at an oriented point ðp;nÞ is a
2D grid accumulator of 3D points as the grid is rotated
around n by 360 degrees. Thus, a spin image is a descriptor
of the global or local shape of the object, invariant under
rigid transformations. Locality is expressed by the size of the
spin image grid and the size of the grid cells (bins). For
the purpose of representing facial features on 3D facial
datasets, it was experimentally determined that a 16� 16
spin image grid with 2 mm bin size should be used. This
represents the local shape of the neighborhood of each
landmark, spanned by a cylinder of 3.2 cm height and 3.2 cm
radius.

To identify interest points on 3D facial datasets, we
create spin image templates that represent the classes of
the landmarks used. Due to the symmetric nature of the
face, spin image templates can represent only five classes
(without the distinction of left/right): the eye outer corner,
eye inner corner, nose tip, mouth corner, and chin tip
landmarks. Spin image templates are statistically gener-
ated from 300 manually annotated frontal face scans of
different subjects, from the FRGC v2 database, subset I
(Fig. 11) with varying expressions. They represent the
mean spin images associated with the five classes of the
landmarks (Figs. 1g and 8).

Landmark points can be identified according to a
similarity measure of their spin images P with the five
spin image templates Q that represent each landmark class.
This similarity measure is expressed by the normalized
linear correlation coefficient:

SðP;QÞ ¼ N
P
piqi �

P
pi
P
qiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

N
P
p2
i �

�P
pi
�2��

N
P
q2
i �

�P
qi
�2�q ; ð10Þ

where pi, qi denote each of the N elements of spin images
P and Q, respectively [36].

The spin image similarity maps Smap (Figs. 6b, 6c, 6d, 6e,
and 6f) provide an insight into the discriminating power of
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Fig. 6. Depiction of: (a) shape index map (black denotes regions of minimum values and white denotes regions of maximum values, in a gray scale
mapping of ½0; 1�), and (b)-(f) spin image similarity maps: (b) eye outer corner, (c) eye inner corner, (d) nose tip, (e) mouth corner, and (f) chin tip
(black denotes regions of low similarity values ð�1Þ and white denotes regions of high similarity values ðþ1Þ, in a gray scale mapping of ½�1;þ1�).

Fig. 7. Depiction of detected candidate landmarks on texture image (for viewing purposes only): Top: located landmarks according to similarity with
shape index target values, and bottom: filtered landmarks according to similarity with spin image templates: (a) eye outer corner, (b) eye inner
corner, (c) nose tip, (d) mouth corner, and (e) chin tip.

Fig. 8. Depiction of spin image templates: (a) eye outer corner, (b) eye
inner corner, (c) nose tip, (d) mouth corner, and (e) chin tip.



each spin image template. They are a u; v mapping of the
SðP;QÞ value between the spin image P of every facial
dataset point and each spin image template Q:

Smapðu; vÞ  SðP ðx; y; zÞ; QÞ: ð11Þ

Spin image templates for the eye inner corner and the nose
tip have the highest discriminating power since high
similarity areas are located at the expected facial regions,
even though the nose tip template has some similarity with
eyebrows and chin regions. The spin image template for the
chin tip has a medium discriminating power since it has
similarity with eyebrows and nose regions. Finally, the spin
image templates for the eye outer corner and the mouth
corner have the lowest discriminating power since there is
high similarity between them and also with other regions of
the face, such as the cheeks and forehead. These error-prone
regions can be filtered out by using the shape index values.

Therefore, instead of searching all points of a facial
dataset to determine the correspondence with the spin
image templates, we use the shape index’s candidate
landmark points. Thus, the candidate landmark points of
the five landmark classes (eye outer corner, eye inner
corner, nose tip, mouth corner, and chin tip) that are
obtained from the shape index map are further filtered out
according to the similarity SðP;QÞ of their spin images with
the spin image templates representing each landmark class.
These classified filtered landmarks are sorted in descending
order of significance according to their similarity measure
with their corresponding spin image template and kept in
five lists, one for each landmark class. The most significant
subset from each list is retained (a maximum of 160 eye
outer corners, 64 eye inner corners, 24 nose tips, 320 mouth
corners, and 128 chin tips) (Fig. 7). By using the spin images,
the total number of candidate landmarks resulting from the
shape index values are significantly decreased and are more
robustly localized.

4.3 Landmark Labeling and Selection

The procedure for landmark detection, labeling, and
selection is described in Algorithm 1. The detected and
classified geometric candidate landmarks from the shape
index and the spin image maps are used as the candidate
landmarks for eye outer corner, eye inner corner, nose tip,
mouth corner, and chin tip (Figs. 1 and 7).

Algorithm 1. Landmark Labeling & Selection

1: Extract candidate landmarks from the geometric

properties of the facial scans, using Shape Index and
Spin Images (Sections 4.1 and 4.2).

2: Create feasible combinations of 5 landmarks from the

candidate landmark points, by using landmark

constraints.

3: Compute the rigid transformation that best aligns the

combinations of 5 candidate landmarks with the

FLM5L and FLM5R.

4: Filter out those combinations that are not consistent
with FLM5L or FLM5R, by applying the fitting

procedure (Section 3.3).

5: Sort consistent left (FLM5L) and right (FLM5R)

landmark sets in descending order according to a

distance metric from the corresponding FLM.

6: Fuse accepted combinations of 5 landmarks (left and
right) in complete sets of 8 landmarks.

7: Compute the rigid transformation that best aligns the

combinations of 8 landmarks with FLM8.

8: Discard combinations of landmarks that are not

consistent with FLM8, by applying the fitting

procedure (Section 3.3).

9: Sort consistent complete landmark sets in descending

order according to a distance metric from FLM8.
10: Select the best combination of landmarks (consistent

with FLM5L, FLM5R or FLM8) based on the distance

metric to the corresponding FLM.

From the candidate landmark points we create combina-
tions of five landmarks, one from each class. Since an
exhaustive search of all possible combinations of the
candidate landmarks is not feasible, two types of landmark
position constraints are used to reduce the search space
(pruning) by removing obvious outliers, thus speeding up
the search algorithm.

The Absolute Distance constraint captures the fact that the
distances between two landmark points must be within
certain margins consistent with the absolute face dimen-
sions. Distance constraints are created from the marginal
shape variations of FLM8.

The Relative Position constraint captures the fact that the
relative positions of landmark points must be consistent
with the face shape. Considering the nose tip as a center, all
other landmarks must lie in a counterclockwise direction
for FLM5L and in a clockwise direction for FLM5R.

Note that the use of candidate landmark sets with five
landmarks has a dual purpose: 1) It is the potential solution
for semiprofile and profile faces, and 2) it reduces the
combinatorial search space for creating the complete land-
mark sets in a divide-and-conquer manner. Instead of
creating 8-tuples of landmarks out of N candidates, which
generates N8 combinations to be checked for consistency
with FLM8, we create 5-tuples of landmarks and check 2N5

combinations for consistency with FLM5L and FLM5R. We
retain 512 landmark sets consistent with FLM5L and
512 landmark sets consistent with FLM5R. By fusing them
and checking consistency with FLM8 we obtain an extra
512� 512 combinations to be checked. Thus, by this
approach, 2N5 þ 5122 	 N8 combinations are checked, with
OðN5Þ 	 OðN8Þ. For N ¼ 128, we obtain approximately
69� 109 instead of 72� 1015 combinations to be checked.

To find the optimal solution, the three available con-
sistent lists of landmark sets (left, right, and complete) are
sorted in descending order according to a distance measure
from the corresponding model (FLM5L, FLM5R, FLM8).
The landmark set (left, right, or complete) that has the
minimum distance measure is identified as the optimal
solution (Figs. 1 and 9).

Since FLM5L, FLM5R, and FLM8 have different dimen-
sions k in shape space, Procrustes distancesDP (2) cannot be
used as a distance measure as they are not directly
comparable. Thus, we must use alternative measures for
the distance between two landmark shapes that can be
comparable irrespective of their dimensions.

An intuitive normalized Procrustes distance DNP that takes
into consideration the shape space dimensions k is
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DNP ¼
DP

k2
: ð12Þ

The division by k2 instead of k is preferred to give a bias to

the complete solution.
A nongeometric measure of the quality of a landmark

shape is its mean spin image similarity DSS normalized to
½0; 1� (0 for high and 1 for low similarity):

DSS ¼
1

2
1�

Pn
i¼1 SðPi;QiÞ

n

� �
; ð13Þ

where SðPi;QiÞ is the similarity measure between the
landmark spin image Pi and the corresponding template
Qi, and n is the number of landmarks.

Thus, an intuitive normalized Procrustes � mean spin
similarity distance DNPSS that takes into consideration the
geometric distance and the spin image similarities can be
defined as:

DNPSS ¼ DNP �DSS: ð14Þ

The DNPSS distance metric is used in the presented

landmark detection method, which will henceforth be

called “METHOD SISI-NPSS.”
In Fig. 9 (top), gray boxes represent landmark sets

consistent with FLM5L and FLM5R, while white boxes are
landmark sets consistent with FLM8. Note that the FLM8
consistent landmark set is not always the best solution;
FLM5L and FLM5R are better solutions for semiprofile and
profile facial datasets (Fig. 9 (bottom)).

5 LANDMARK LOCALIZATION RESULTS

5.1 Test Databases

To evaluate the performance of the presented landmark

detector, we used two of the largest publicly available 3D

face databases [8]. For frontal facial datasets, we used the

FRGC v2 database [6], [7]. The FRGC v2 database contains

a total of 4,007 range images of 466 individuals. Subjects

have almost frontal poses and various facial expressions

(e.g., happiness and surprise). Hence, FRGC v2 is more

challenging than FRGC v1. For the purposes of this

evaluation we manually annotated 975 frontal facial

datasets obtained from 149 different subjects, selected from

the FRGC v2 database subset II (Fig. 11), including several

subjects with various facial expressions. This database will

henceforth be referred as DB00F (Fig. 10a). To quantitatively

assess the performance of our 3D landmark detector on

facial datasets with varying degrees of expressions, we

manually classified the DB00F datasets into three subclasses

according to expression intensities: “neutral,” “mild,” and

“extreme.”
For semiprofile and profile facial datasets, we used the

Ear Database from the University of Notre Dame (UND),

collections F and G [8]. This database (which was created

for ear recognition purposes) contains 119 side scans of

119 subjects at �45 degrees and 88 side scans of 88 subjects

at �60 degrees. Note that though the creators of the

database marked these side scans as 45 and 60 degrees,

the computed maximum angle of yaw rotation is 69 and

82 degrees, respectively (Table 5). For the purposes of this

evaluation, we manually annotated 118 right and 118 left,

45 degrees side datasets, obtained from 118 different

subjects. These databases will be referred to as DB45L and

DB45R, respectively (Figs. 10b and 10c), and their union is

DB45RL. We also annotated 87 right and 87 left 60 degrees

side datasets, obtained from 87 different subjects. These

databases will be referred to as DB60L and DB60R,

respectively (Figs. 10d and 10e), and their union is DB60RL.

Finally, we composed a database with datasets of

39 common subjects found in DB00F, DB45R and DB45L.

This database consists of 117 (3� 39) scans in three poses,

frontal and 45 degrees left and right, and will henceforth be

referred to as DB00F45RL.
In the evaluation databases, only facial datasets with all

landmark points visible were included (eight for frontal

scans and five for side scans). The exact datasets that were

used from the source databases for training and testing can

be found from the landmark annotation files available

through our website [37].
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Fig. 9. METHOD SISI-NPSS: Results of landmark detection and
selection process: Top: extracted landmark sets consistent with FLM8
(white) and FLM5L or FLM5R (gray) and bottom: resulting optimal
landmark set. (a) Face at 45 degrees yaw, (b) face at 60 degrees yaw,
and (c) frontal face with extreme expression.

Fig. 10. Depiction of frontal view of scans from the database used:
(a) frontal (DB00F), (b) 45 degrees right (DB45R), (c) 45 degrees left
(DB45L), (d) 60 degrees right (DB60R), and (e) 60 degrees left (DB60L).
Note the extensive missing data in (b)-(e).

Fig. 11. FRGC v2 partitioning: (I) 300 facial scans for training FLMs,
shape index target values, and spin image templates, and (II) 975 facial
scans for testing.



5.2 Performance Evaluation

To evaluate the performance of the presented landmark
detection method, we conducted the following two
experiments: In Experiment 1, we evaluated the perfor-
mance of Method SISI-NPSS against yaw variations, and in
Experiment 2, we evaluated the tolerance of Method SISI-
NPSS against expression variations.

The performance evaluation of a landmark detector is
generally presented by computing the following values,
which represent the localization accuracy of the detected
landmarks.

Absolute distance error. The euclidean distance in physical
units (e.g., mm) between the position of the detected
landmark and the manually annotated landmark, which is
considered ground truth.

Detection success rate. The percentage of successful
detections of a landmark over a test database. Successful
detection is considered as the detection of a landmark
with absolute distance error under a certain threshold
(e.g., 10 mm).

In our experiments, the localization error is represented by
the mean and standard deviation of the absolute distance
error of the detected landmarks. Also, the overall mean
distance error of the eight landmark points for the frontal
datasets and of the five landmark points for the side
datasets was computed.

The success rate of landmark localization with an absolute
distance error threshold of 10 mm is reported in the result
tables. Note that, as pointed out in [2], our UR3D-S face
recognition method can tolerate landmark localization
errors up to 10 mm.

The yaw angle of probe faces is computed and its mean
value, standard deviation, and minimum and maximum
values are presented. The yaw angle results from the
rotational transformation of the optimal solution that fits
the probe face to the corresponding FLM and thus the probe
face is classified as frontal, left side, or right side. Side
detection can be crucial in determining follow-up actions in
a biometric system. The side detection rate reported in the
result tables is the percentage of correct side estimations of
the probe faces with respect to their ground-truth side and
whose detected landmarks also have an overall mean
distance error under 30 mm.

We depict the Cumulative Distribution graph of the mean
distance error in Fig. 13 to show the method’s tolerance to
expression variations and in Fig. 12 to show the method’s

robustness to yaw rotations. In these graphs, the x-axis
represents the mean distance error between the manually
annotated landmarks and the automatically detected land-
marks in intervals of 2 mm, and the y-axis represents the
percentage of face datasets with a mean distance error up to
a certain x-value, out of all gallery datasets.

Summary results for METHOD SISI-NPSS on all tested
databases are presented in Table 1. The results clearly
indicate that our method exhibits high accuracy and
robustness both to yaw and expression variations. The
mean error is under 6.3 mm, with standard deviation under
2.6 mm on all tested facial scans. Also note that the mean
error is under 10 mm for at least 90.4 percent of the tested
facial scans and the facial side was correctly estimated on
over 98.9 percent of the tested facial scans.

Specifically, the best results were obtained for the frontal
facial scans category and the worst for the 60 degrees facial
scans. This is due to the fact that, as the yaw angle increases,
landmark detection becomes more difficult, mainly due to
distortions on their shape index and spin image values
caused by the missing data around the nose and chin tip
regions (Figs. 10b, 10c, 10d, and 10e). The results that assess
the robustness of METHOD SISI-NPSS against yaw varia-
tions are presented in Table 5 and Fig. 12.

The most robust facial features are the nose tip and eye
inner corners, with a lower mean error and standard
deviation across yaw rotations and expression variations.
This is due to the fact that they have more distinct geometry,
which is more easily captured by the detectors, and there are
no substantial changes in their shape index and spin image
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Fig. 12. Mean error cumulative distribution of METHOD SISI-NPSS on
DB00F, DB45RL, and DB60RL.

TABLE 1
Summary Results for METHOD SISI-NPSS

Fig. 13. Mean error cumulative distribution of METHOD SISI-NPSS on
DB00F “neutral,” “mild,” and “extreme.”



values due to the deformations resulting from facial

expressions. The least robust facial feature appears to be

the mouth corners, mainly due to the fact that they do not

have enough distinct geometry and are also prone to changes

in their shape index and spin image values due to the

deformations resulting from facial expressions. The results

that assess the tolerance of METHOD SISI-NPSS against

expression variations are presented in Table 2 and Fig. 13.

5.3 Comparative Results

For comparison of the performance of the presented

landmark detection method against other state-of-the-art

methods, we present landmark localization errors in Tables 3

and 4. Note that each method uses a different facial

database, making direct comparisons difficult. However,

these results indicate that METHOD SISI-NPSS outperforms

previous methods for the following reasons: 1) It is more

accurate since it gives smaller mean localization distance

errors for almost all landmarks, and 2) it is more robust

since it gives smaller standard deviations for the localization

distance error.
Comparative results of landmark localization errors on

almost-frontal facial datasets are presented in Table 3. Yu

and Moon’s method [26] exhibits the minimum mean

localization error for the nose tip, but has a large standard

deviation. Lu and Jain’s method [9] exhibits the minimum

mean localization error for the mouth corners, but is not a

pure 3D method since it is assisted by 2D intensity data.
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TABLE 2
Experiment 2: METHOD SISI-NPSS Tolerance to Expression Variations on DB00F

TABLE 3
Comparison of METHOD SISI-NPSS against State of the Art on Almost-Frontal Complete Facial Datasets

TABLE 4
Comparison of METHOD SISI-NPSS against State of the Art on Mixed (Frontal and Profile) Facial Datasets



Finally, Colbry’s method [13] seems to perform well for all
landmarks, comparatively close to our method, but has
larger standard deviations. Note that the FRGC v1 database
used in Yu and Moon [26], Lu and Jain [11], Lu and Jain [9],
and Colbry [13] is considered less challenging than the
FRGC v2 used in our experiments since FRGC v1 contains
subjects with neutral expressions, while FRGC v2 contains
subjects with various facial expressions. Furthermore, the
database used by Colbry [13] contains a small portion
(
 5 percent) of proprietary datasets with pose variations,
occlusions, and expressions. The BU-3DFE database [29]
used in Nair and Cavallaro [28] contains frontal only 3D
facial datasets, which were created by the fusion of facial
data acquired at �45 degrees yaw, from 100 subjects that
perform seven universal expressions.

Comparative results of landmark localization errors on
mixed (frontal and profile) facial datasets are presented in
Table 4. To the best of our knowledge, Lu and Jain’s method
[11] is the only method in which localization errors on both
frontal and profile facial datasets were presented. These
results indicate that METHOD SISI-NPSS outperforms Lu
and Jain’s method in both accuracy and robustness. The
proprietary MSU database used in Lu and Jain [11] contains
300 3D facial scans from 100 subjects, three scans for each
subject captured at 0 and �45 degrees yaw angles. The
DB00F45RL database used in our experiments, despite
having fewer subjects, is considered more challenging, since
yaw angles lie in the range ½�65;þ67� degrees (Table 5).

The inclusion of facial expressions into the FLMs and the
use of separate shape index target values for each
individual landmark resulted in an improved accuracy of
our landmark detector (by up to 28 percent) and an
improved detection rate (by up to 16 percent) compared
to our early results that appeared in [2].

5.4 Computational Cost

For the evaluation of the presented method’s computa-
tional efficiency, a PC with the following specifications
was used: Intel Core i5 2.5 GHz with 4 GB RAM. Using
this PC, 6.68 s (on average) was required to locate the
landmarks for each facial scan. The average time taken for
each step of the method is: Data loading 0.04 s, shape
index computation and landmark localization 0.26 s, spin
image computation and landmark filtering 0.31 s, FLM5L-
FLM5R matching and landmark labeling 5.05 s, and FLM8
matching and optimal landmark set selection 1.02 s. The
procedures for determining the optimal rotation for the
alignment of the landmark shapes to the FLMs require at
most eight iterations to converge. Speedups through
parallelization are possible and thus the computational
efficiency of the presented landmark detector makes it
applicable to real-world applications.

6 CONCLUSION

We have presented an automatic 3D facial landmark
detector that offers pose invariance and robustness to
large missing (self-occluded) facial areas with respect to
large yaw variations. It also offers high tolerance to large
expression variations. The presented approach consists of
methods for 3D landmark localization that exploit the 3D

geometry-based information of faces and the modeling

ability of trained landmark models. It has been evaluated

using the most challenging 3D facial databases available,

which contain scans with yaw variations up to 82 degrees
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TABLE 5
Experiment 1:

Performance of METHOD SISI-NPSS against Yaw Variations



and strong expressions. In these databases, it achieved
state-of-the-art accuracy, significantly outperforming (by up
to 28 percent) our previously published work [2].

Although it is possible to consider extensions for
improving accuracy (e.g., by including the nostrils’ base
or another anatomical landmark into the FLMs, or by
applying heuristic methods of postprocessing for fine-
tuning the positions of landmarks), we believe that such
improvements will be marginal and at the expense of the
method’s simplicity and speed. We intend to consider
algorithmic and architectural speedup techniques to
achieve real-time performance.
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