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Ch. 1
INTRODUCTION

The overall aim of the research project
Our research project intended to take a close look at pedagogical practices adopted in
mathematics and physics classrooms in Greek Lower and Upper secondary schools on
topics that are related to periodicity. Even though periodicity is central in a variety of
disciplines, an extensive search of the literature shows that there are only a limited
number of studies that focus on its understanding.

Periodicity is a concept present in the development of scientific thought. Through
history, periodicity was used as an argument that qualifies a certain repetitive
behaviour and from there, under a more analytic use, was a property for functions that
modelled oscillatory movements. Starting with pattern observation, human beings are
capable of abstracting this property in order to generate scientific knowledge.
Examples of its use while developing scientific knowledge are numerous: Pannekoek
(1961) identifies the systematic observation of celestial bodies’ periodic behaviour as
the origin of astronomy as a scientific activity; Whitehead (1983) points out
periodicity as the property which favours an analysis of the analogies between
different  physical  phenomena.  It  turns  out  to  be  a  property  of  different  kinds  of
objects that begins in the everyday individual experiences (the year seasons, night and
day), it enters into school’s mathematics from the very beginning (periodic decimal
numbers) and goes through several school’s disciplines (phenomena in physics,
functions as in calculus) all of which form part of the students’ scientific culture.

Even though periodicity is central in a variety of disciplines, an extensive search of
the literature shows that there are only a limited number of studies that focus on its
understanding. These studies conclude that most students' conceived image of
periodicity is based on time-dependent variations (Shama, 1998), while usually they
consider any repetition as being periodical (Buendia & Cordero, 2005). Dreyfus and
Eisenberg (1980) state that textbook authors appear to be well aware of the technical
difficulties often arisen while proving that a function is periodical. In addition, as Van
Dormolen and Zaslavsky (2003) argue, the periodical property changes according to
what is considered periodical in a particular field. Buendia and Cordero (2005) argue
that notion’s current treatment in school due to different perceptions of and practices
in science and mathematics instruction limits its recognition.

The three research phases
In this research study we take the position that understanding the notion of periodicity
and its properties involves creating a coherent framework where ideas and educational
practices in different school subjects are meaningful at an individual level.
Furthermore, understanding of periodicity is realized through specific situations
where it takes its meaning (Radford, 2013).
To meet the aims of our inquiry,  we designed three different research phases.  In the
first phase of  our  project  we  analyzed  Greek  textbooks  taken  from  the  subjects  of
science (physics, astronomy, applied technologies) and mathematics focusing on the
reasoning practices adopted in the textbooks; we have analyzed 110 thematic units;
214 visual representations and 162 proposed exercises on 12 textbooks.

In the second phase,  our  main  interest  was  how  undergraduate  students  in  the  first
and second year of their studies perceive periodic motions and their graphical
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representations. We contacted three research activities. 288 undergraduate students
(230 from the technological education and 58 from the technological education) from
4 Technological departments and 2 University departments participated. The
participants were in scientific direction fields who passed at a national exam in order
to  attend  their  undergraduate  studies.  Part  of  their  exams  was  thematic  units  on
periodicity (e.g. mechanical and electrical oscillations). Besides, during their
undergraduate studies all students in scientific direction fields encounter aspects of
periodicity (usually in their first year Calculus and Fourier analysis courses). Fourier
analysis is a prerequisite course for studying signal processing in the fields of
Informatics and Electronics. Thus, for all the participants, periodicity is considered as
an important scientific notion not only for their academic studies, but for their
professional life as well. Our emphasis was mostly in undergraduate engineering
students who study in Technological Institutes because (i) in Greece holds lower
prestige than Universities, (ii) is an area that is under investigated, and (iii) the notion
of periodicity is central in engineering studies.
Finally, in the third phase we focused on secondary teachers’ practices when they
teach topics relative to periodicity in their classes. 55 teachers participated in two
research activities.

Summative results taken from the first, second and third reports

In the first research we focused on the reasoning practices adopted in Greek
mathematics and science textbooks when new knowledge on periodicity is developed.
Reasoning has been investigated through the logical act created by a part of the text of
a thematic unit. We realized that the argumentation in a thematic unit is produced by
the sequence of the Modes of reasoning (MsoR) that the author develops in the text
when organizing and presenting the new knowledge, The main categories of modes of
reasoning identified were (a) the empirical, the logical-empirical, the nomological,
and the mathematical. Furthermore, our analysis indicated that Physics is the richest
subject where different aspects of periodicity are introduced explicitly and developed.
The  exploration  of  the  function  of  VRs  in  all  textbooks  reveal  tools,  practices  and
rules used by the different communities and show the nature of activity taking place.
In  this  way the sinusoidal graph dominates all school activities. Emphasis on
abstracted aspects of periodicity is apparent in mathematics where almost all visual
representations are context free (Triantafillou & Spiliotopoulou, 2014). Physics is
starting with the presentation of natural and everyday phenomena and follow a path
up to semi-abstracted forms of knowledge (showing time-dependent images). The
other two subjects follow their historical goals (examples of Natural life are met
mostly in Astronomy while images of scientific devices are mostly met in Applied
Technologies). Finally, our analysis indicated that there is divergence in the demand
in the proposed exercises analyzed in the mathematics and science subjects while
most  of  all  the  proposed  exercises  are  context  free  while  VRs  are  almost  absent  in
both subjects.

The results in the second phase indicate that the vast majority of students easily
identified the periodical property in periodic graphs. It is interesting though that a
graph, which exhibits a fluctuation (looks like the sinusoidal curve but with
decreasing amplitude) seemed to confuse students a lot since almost seven out of ten
considered that this represents a periodic motion. Conceptualizing proportional
relations  of  the  quantities  E  (in  Voltage)  -υ (in  m/s2) on the formula E=Blυsina is
more difficult than conceptualizing proportional relations of the quantities F-x on the
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formula F=kx. This is explained since the second formula is the typical formula of
examining linear relations in mathematics, while the first one is not. Besides, students
rarely make connections between different graphical representations of the same
periodic phenomenon. Although argumentation and reasoning seems to be a non-
familiar practice for students they exhibit strong willingness to assign meaning to
abstract mathematical entities (Triantafillou, Spiliotopoulou & Potari, 2014).
Nomological MsoR as the definition of periodic functions as appears in mathematics
texts, seems to be not a familiar tool for arguing even in the case of students who are
studying mathematics. Undergraduate engineering students - prospective teachers in
Greek secondary vocational schools – transformed a text on a thematic unit that was
referring to the periodical character of car suspension into an explanatory teaching
unit exhibit three levels of awareness: the superficial, the partial and the substantial
explanatory. In the latter case students’ explanatory text was argumentative while in
the other cases was mostly descriptive.

The results of the third phase indicate that the fundamental image of the notion in
teachers’ pedagogical practices in mathematics and science is the sinusoidal function.
All teachers mention a lot of examples used in their lesson when teaching aspects of
periodicity and they suggested that making connections to everyday life periodic
phenomena could help students to develop a unified view of periodicity. But our
analysis indicated that teachers are not consciously use every day phenomena as
generic examples or in order to make a general claim but only to stimulate their
students' attention. All the educators were critical of the textbooks use in their
classroom practice so they prefer to modify parts of the new knowledge organization
provided in each thematic unit. The modifications mentioned by the teachers could be
omitting  or  enriching  the  modes  of  reasoning  presented  in  their  texts.  These
modifications could result in changes in the argumentation developed in each
thematic unit and hence influence students’ conceptualization. Finally, co-operation
among teachers from different subjects seems to be a non-preferable practice by
almost all of them. Hence, instead of identifying differences in teacher’s pedagogical
practices when they teach aspects of the notion of periodicity we identified common
reasoning attitudes.

OUR AIM in the FINAL REPORT
In the final report our focus is on the reasoning practices a) developed in school texts,
b) adopted by the students in the process of making sense of textual and visual
elements on periodicity and c) implemented by secondary teachers when teaching
periodicity. Our further aim is to detect links between argumentation and
conceptualization or in other words to find out how the reasoning practices are
interrelated with conceptualizing aspects of the notion of periodicity.

In order to implement our plan in some cases we repeat our initial analysis under our
developed and established framework on modes of reasoning (Triantafillou,
Spiliotoulou & Potari, 2015). This framework provide us a set of filters through which
we can systematically examine a) science and mathematics textbooks in terms of how
knowledge is presented and argumentation is unfolded not only through the texts of
units, but also through textbooks’ proposed exercises, b) the students’ responses in
selected tasks on periodicity and c) teachers’ practices in terms of teaching periodicity
and the use of textbooks’ argumentation.

We divide the final report in two parts.
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PART I: The Nature of argumentation adopted in Greek School Mathematics and
Physics Texts on Periodicity.
In the first part, we focus on the nature of argumentation adopted in school texts in the
‘content presentation sections’ and in the reasoning practices demanded by the
students when they are engaged in the ‘textbook proposed exercises’. Our discussion
in the final report will take place only about the subjects of mathematics and physics,
since our initial analysis indicates that these are the main school subjects that
introduce students in Greek lower secondary and upper secondary general and
vocational schools to the notion of periodicity.
PART II: We divide this part of our study in PART IIa and PART IIb.

In PART IIa, we focus on undergraduate students' meaning making of textual and
visual elements of school texts on periodicity. We analyze their justifications on
certain tasks related to aspects of the notion. The title of this part of our research is
"Documentation of undergraduate students’ thinking and reasoning on
periodicity”.
In PART IIb, our focus is on secondary mathematics and science teachers’
pedagogical practices when teaching specific thematic units on periodicity. The title
of this part of our study is: “Teachers’ pedagogical tools when teaching periodicity”.
Particularly, we are seeking to discover how teachers of the two disciplines use texts’
inherit logic when teaching aspects of periodicity and how they institutionalize their
students' knowledge accordingly.
The  findings  of  our  project  reveal  practices  adopted  in  the  two  communities  of
mathematics and physics and can help us to build  a  wider  perspective  of  how
reasoning is related to conceptualization in the case of periodicity. Moreover, issues
like the transfer of content knowledge and its relation to the transfer of reasoning
skills in the two communities are elaborated. Pedagogical implications of our findings
can be relevant to the teaching and learning of the related school subjects and the
development of innovative curricular materials that help students develop their
reasoning and argumentation in order to develop a robust understanding.
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Ch. 2
PART I

“The nature of argumentation in Greek school mathematics and
physics texts on periodicity”

INTRODUCTION
Reasoning, the human capacity to make sense of the world, has long been the goal of
science and mathematics. Despite the obvious differences in the two subjects’ themes,
Lakatos (1976) pointed out the strong parallels between mathematical and scientific
reasoning discourse. From a pedagogical point of view, Vygotsky and Piazet
established the value and the role of argumentation in students' thinking. For example,
in Judgment and reasoning in the child Piazet (1928) described the development of
logical thinking as the result of children's confrontation with other points of view and
the subsequent need to justify their own view points. Vygotsky (1978) by considering
the important point of social interaction emphasizes that understanding emerges
through differences and arguments. In this direction, a common learning objective in
mathematics and science education is to help students gain understanding of how
scientific/mathematical claims can be proved or disproved (Oehrtman & Lawson,
2008). Argumentation as the act of forming reasons, making inductions, drawing
conclusions, and applying them to the case under discussion is met in students'
responses and in teachers' practices as well.

One didactical resource of appropriate reasoning practices is the school texts (Nicol &
Crespo, 2006; Koponen & Nousiainen, 2012). In secondary school education in most
countries (Greece included) textbooks are the main source of potential learning. Not
only textbooks are the expressions of the intended curriculum (the goals and
objectives intended for learning at a national level), but teachers also use them as the
main (and maybe the only) resource to assign homework to their students. In spite of
the pervasive presence of textbooks in schooling and educative practices, few research
studies have focused on textbooks analysis in relation to their content (e.g. Stinner,
1992; Mesa, 2004). Moreover, there is no research in textbook analysis on a particular
notion that crosses different educational courses. In this study we analyze the inherent
logic  of  a  concept  presentation  in  mathematics  and  science  school  texts  and  the
problems presented to students in specific topics related to the notion of periodicity.

THEORETICAL BACKGROUND
Vygotsky (1978) distinguished two types of concepts. The every day or spontaneous
or intuitive concepts arising from students' experiences and the scientific or
theoretical or formalized concepts or the cultural tools that have been elaborated and
refined in a school or academic community. Mature knowledge is achieved with the
merging of every day and scientific concepts and not by replacing the former by the
latter ones. But what about the notion of periodicity that is very close to all students'
experiences and at the same time a fundamental scientific concept with different
images in mathematics and science?
Physics and math teachers in recent days are very focused on improvements in
teaching their discipline. Their purpose is to ensure that students understand the
concepts relevant to the field. In math, the emphasis is on improving skills and
simplifying conceptual development without explicit attention to its connections to
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physics and engineering. On the other side, the selected physics curriculum reduces
the complexity of the underlying mathematical content by keeping it at the level of
algebra or trigonometry. Bingolbali and Monaghan (2008) by comparing the math
content between the calculus and the physics textbooks argued that there is evidence
that each holds differing epistemological and paradigmatic commitments, which are
not incompatible but whose connections are not made explicit to the students. So, how
school  texts  help  students  to  make  the  appropriate  connections  about  a  common
concept as the notion of periodicity?

In this part of the report, we restrict out attention to the argumentation practices
developed in school texts.

The Meaning of Argumentation
van Eemeren and Grootendorst (2004) defined argumentation as a verbal (uses oral
and written language), social (involves two or more people), and rational
(intellectual) activity aimed at defending a standpoint. Argumentation has three
generally recognized forms: analytical, which is grounded in the theory of logic and
proceeds inductively or deductively from a set of premises to a conclusion;
dialectical, which occurs during discussion or debate; and rhetorical, which is
employed to persuade an audience. In our study, we consider that the argumentation
developed by school textbook authors is a combination of analytical and rhetorical
elements, links, and moves employed to persuade the readers (e.g., students or
educators). If these two forms are successful, the dialectical form of argumentation
occurs and can be documented. We also study argumentation beyond its verbal
component to its visual components, which are expressed through representations
(e.g., drawings, pictures, graphs, charts, tables, models, and images).

In most studies, the analysis of science and mathematics argumentation practices is
based on Toulmin’s (2003) framework with the following elements: claims, data,
warrants, backings, qualifiers, and rebuttals. Claims are statements that advance a
position taken. Data involves observations, facts, measurements, etc. that can be used
as evidence to prove or support the claim. Warrants are the logical connections
between data, backings, evidence, and claims that indicate support for the claim or the
rebuttal  of  a  counterclaim.  Backings  support  the  validity  of  the  warrants.  Qualifiers
refer to the degree of strength and certainty in one’s own argument, while rebuttals
challenge any element of arguments put forth by others. Although logic is seen as an
academic discipline that presents decontextualized rules for relating premises to
conclusions, arguing is a human practice that is situated in specific social settings
(Toulmin, 2003). From this perspective, textbook argumentation can be seen as a
negotiated sociocultural act that takes place within a group of people (e.g., authors,
students, and educators) in a school/learning community.

A central problem area in the analysis and evaluation of argumentative discourse is
the analysis of “argumentation structures” (van Eemeren & Grootendorst, 2004, p. 2).
The “single argumentation consists of a single reason for or against a standpoint,
while in argumentation with complex structures, several reasons are put forward for
or against a standpoint” (p. 4). We consider that the argumentation developed by the
author in a school textbook is usually characterized as having complex argumentation
structures because different forms of reasoning are used to persuade the readers. In the
present study, argumentation is taken as the sequence of the forms of reasoning that
the author develops in a text when organizing and presenting the new knowledge.
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Argumentation and Reasoning in Mathematics and Science Textbooks
Numerous research studies have been conducted on the analysis of reasoning,
explanations, and proving or supporting ideas in school mathematics and science
textbooks. The focus related to argumentation in mathematics textbooks has been on
the type of reasoning and on the nature of the mathematical activity that is promoted.
van Dormolen (1986) identified theoretical (theorems, definitions, axioms),
algorithmic (explicit  methods  or  how  to  do  a  specific  operation  or  procedure),  and
logical (statements about the way one should work using the theory) dimensions in
analyzing the mathematics evident in textbooks. Stylianides (2009) presented an
analytic/methodological approach for the examination of the opportunities designed in
mathematics textbooks for students to engage in reasoning and proving activities in
which he identified non-proof and proof arguments. Non-proof arguments involve the
cases of empirical arguments and rationales that capture valid arguments for or
against a mathematical claim; proof arguments involve generic examples (e.g.,
particular case seen as representative of the general case) and demonstrations (e.g.,
connected sequence of assertions based on accepted truths such as axioms, theorems,
definitions, and statements). Stacey and Vincent (2009) analyzed the nature of data
and warrants presented in mathematical textbook explanations and identified the
following modes or categories of reasoning: deductive (using a model or a specific or
general case), empirical (experimental demonstration or concordance of a rule with a
model), metaphorical, and appeal to authority.
Similarly, analysis of the argumentation in science textbooks focuses on the forms of
reasoning and on the scientific dimensions emphasized. Fahnestock and Secor (1988)
included definitions and generalizations as  two  major  elements  that  are  evident  in
science textbooks. Stinner (1992) classified the knowledge provided in science
textbooks in two planes: the logical plane, which includes the finished products of
science such as laws, principles, models, theories, and the mathematical and
algorithmic procedures establishing them; and the evidential plane, which includes
the experimental, intuitive, and experiential connections that support the logical plane.
Moreover, Mahidi (2013) found that the knowledge organization in university-level
physics textbooks on specific topics used inductive-like and deductive-like structures.
Overall, the literature review indicates that there are common grounds in reasoning in
these  two  school  subjects.  For  example,  empirical  types  of  reasoning  and  the  more
formal types of reasoning (including definitions, mathematical algorithmic
procedures, and generalizations in the form of mathematical proofs or deductions that
are based on general cases) are encountered in both mathematics and science school
practices.
Several studies on mathematics and science textbooks focus exclusively on the nature
and extent of opportunities for students to engage in reasoning practices. Dolev and
Even (2013) reported opportunities for justifications and reasoning they found in
Grade 7 mathematics algebra and geometry textbooks. Stylianides (2008) focused on
how proof is promoted in mathematics curriculum materials in a reform-based
mathematics curriculum. Pegg and Karuku (2012) analyzed reasoning practices in
junior high school chemistry textbooks, and McComas (2003) analyzed U.S.
secondary  school  biology  texts  with  respect  to  how  the  concepts  of law and theory
were defined and applied. These findings indicate that texts rarely require students to
evaluate or apply scientific claims and that further research is needed in the field of
students’ understanding and reasoning practices adopted in school textbooks.
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Finally, Croarke (1996) believes that expanding definitions of argumentation beyond
the verbal component is necessary while Lemke (1998) argues that scientists use a
semiotic combination of text, mathematical expressions and images (e.g. graphs,
photos) in order to reason. In this case, readers must interpret the verbal and the visual
components of the document to comprehend authors’ arguments. Representational
practices have a central role in science and mathematics school communities (Arcavi,
2003; Latour, 1987). In the context of physics Clark and Mayer (2008) argues that
adding graphics to text can improve learning while visual representations are
considered to be legitimate components of scientific arguments and explanations.
Representational practices have a central role in science and mathematics school
communities (Arcavi, 2003; Latour, 1987). Visualization, as a method of 'seeing the
unseen' in images (Arcavi, 2003, p. 216), is no longer related to the illustrative
purposes but is also being recognized as a key component of reasoning deeply
engaging with the conceptual and not the merely perceptual aspect of knowledge
(ibid.). In this direction, Biehler (2005) considers that the representations available for
working  with  are  essential  elements  constitutive  of  the  meaning  of  any  scientific
concept. Visual means of communication are particularly helpful in introducing
abstract concepts in science and mathematics. Fond, Godino and D’ Amore (2007)
argue that to speak about visual representations (graphs, tables, photos etc.) is
equivalent to speaking about knowledge, meaning, comprehension and modelling
since these notions make up one of the central nuclei in the disciplines of mathematics
and science.

Periodicity is a concept related not only to periodical phenomena of everyday life and
natural world, but to abstract mathematical notions which model them, as well.
Periodical phenomena are translated through series of visual images in school
textbooks that are at once more inclusive but also more distant from the direct
experience with the phenomena. Researchers argue that students facing difficulties in
handling and integrating the conceptual (e.g., periodic graphs) and the perceptual
(e.g., the periodic motion of a pendulum) aspects of periodicity (Buendia & Cordero,
2005). The question of how textbooks support this difficult integration is an important
and open issue (Dreyfous & Eiseberg, 1980). Scientists use various practices
associated with visual tools. Moreover, scientists construct inscriptions in order to
express ideas for a given task and use inscriptions to explain phenomena, make
predictions, and as forms of communication (Kozma, Chin, Russell, & Marx, 2000).
Some of these inscriptions are also included in school textbooks and the way they
function inside the text could reveal the pedagogical practices adopted in the school
communities (Pozzer-Adernghi & Roth, 2004).
Adopting an activity theory perspective, visual representations are considered as
‘elements’  (i.e.  the  basic  building  blocks)  of  activity  (Roth  &  Lee,  2007).  The  way
these elements are used in the fields of science and mathematics and contribute to
collective knowledge on periodicity is important for students’ learning. This means
that the presence of the concept of periodicity in the school curriculum cannot be
understood or analyzed, without reviewing the pedagogical practices adopted in the
textbooks of these two communities. In both mathematics and science pedagogical
practices when teaching aspects of periodicity are images of instances (or aspects or
properties or models) of the notion. These representations in a school text are
expressed either visually (e.g. pictures, diagrams or maps) or symbolically (e.g.
equations or formulae). The role of images of a common notion in different teaching
practices is under investigated so far. We consider that the representations of the
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notion of periodicity are cultural resources who acted as bearers of distributed
intelligence (Pea, 1993) that they carry, in a compressed way, socio-historical
experiences of cognitive activity and artistic and scientific standards of inquiry
(Lektorsky, 1984). These ubiquitous mediating structures both organize and constrain
educators' teaching practice and provide to students a specific conceptually structured
space to think (Radford, 2013).

Viewing learning as participation in a well-defined practice, tools and artifacts and
their use in this practice are considered as primary object of study (Sfard & McClain,
2002). In this direction, different studies have focused on the analysis of visual
representations. Levin (1981) has identified five functions concerning how pictures
serve in text processing - four conventional functions (decorational, representational,
organizational, interpretational) and one more unconventional one (transformational).

According to Pozzer-Adernghi and Roth (2004) all representations lie along a
continuum from least to more abstract depending on the amount of contextual detail
that they carry in the background of the central object. This continuum starts with
photographs (as images full of gratuitous detail) and naturalistic drawings, continuous
with maps, diagrams, graphs and tables, and ends with mathematical equations (as the
most abstract images).

Different views and analytical approaches on the visual codes have been used in the
science context. Kress and van Leeuwen by following Haliday's seminal work on
Systematic Functional Linguistics define images as representing ideas about the world
(the ideational function); develop a relationship between illustrator and audience (the
interpersonal function); and provide cohesive links (the textual function) (Haliday,
1985; Kress and van Leeuwen, 2006). Pozzer-Adernghi & Roth (2004) acknowledge
that photos and their captions are playing a fundamental role in main text reasoning.
In this direction they identified the following functions of photographs and their
captions in interpreting the main text in Biology textbooks: decorative (there is no
caption and there is no reference from the main text to the photograph); illustrative
(include a caption that describes what the reader is to see in the photograph but the
caption does not provide additional information to the main text); explanatory
(captions  provide  an  explanation  of  or  a  classification  of  what  is  represented  in  the
photographs); and complementary (captions add new information about the subject
matter treated in the main text). They conclude that these differences will influence
readers’ interpretations of the photographs and change their role in the text.

Purpose of PART I of our study and research questions
We adopt the position that textbooks aim to introduce their readers to the conceptual
aspects of scientific and mathematical knowledge and persuade them of their value.
This implies that, inside the text, the deployment of argumentation and
conceptualization is inevitable, while learning is viewed as occurring through the
dialectical relationship between these two channels of thought.

In our study, we consider that the argumentation developed by an author in a school
textbook is a combination of analytical and rhetorical arguments (employed to
persuade the reader who in our case could be a student, or a reader or an educator). If
these two forms are successful, dialectical form of argumentation could also occur.
Furthermore, the function of the visual representations in relation to the reasoning
developed in the science or mathematics text is investigated. We take the view that
the VRs’ genre and the co-deployment of VR and mode of reasoning influence the
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argumentation developed in a school text and consequently influence the practices
adopted in the Mathematics and Physics school communities.

By restricting our attention to thematic units related to the notion of periodicity in
Greek mathematics and physics textbooks, we address the following research
questions:

· How is argumentation structured and developed when employed in the
texts on periodicity?

· What is the role of visual representations in school texts’ reasoning?

· In what respect are argumentation practices similar or different in
school mathematics and physics textbooks?

· How is argumentation unfolded and co-deployed with conceptual
aspects of periodicity while reading a thematic unit?

· What are the conceptions of periodicity that may be stimulated by the
solutions to exercises and problems in the given sample?

METHODOLOGY
We used a grounded theory research approach (Corbin & Strauss, 2007) partly in
response to an increasing awareness of the limitations of applying a priori deductive
theories to human transactions embedded in a social or an educational context and
partly in response to the lack of an existing scheme of categories broad enough to
allow us to study how periodicity is presented and argued across mathematics and
science texts. Grounded theories are situated, not only in “the data,” but also in the
context in which the data were collected and may be considered idiographic theories.
Quality criteria for idiographic theories of action emphasize transferability or
adaptation to different contexts (Gasson, 2003). Inductive content analysis (Mayring,
2000) has been applied on specific thematic units in mathematics and physics texts
that present periodicity. We were looking for categories emerging in terms of existing
forms  of  reasoning  and  argumentation  inherent  in  these  texts  with  the  aim  of
producing a common coding system of categories.

The context
The Greek school system is organized in terms of primary school (ages 7-12), lower
secondary school (ages 13-15) and upper secondary school (ages 16-18). Mathematics
and physics are compulsory subjects in the last two years of primary, and all years of
lower and upper secondary education, and cover a considerable part of the weekly
teaching schedule. The Educational Policy Institute of the Ministry of Education
establishes a national curriculum for each school subject and grade level that are
accompanied by prescribed textbooks. The textbooks are mandatory for all public and
private schools and are normally distributed free of charge to all students and teachers
in the public education sector. This makes the textbooks the central resource for
deciding what topics are studied and how they will be studied.

The domain of our analysis
The texts analyzed are taken from eight Greek textbooks (four Mathematics and four
Physics) used in Greek Lower Secondary and Upper Secondary General Schools.
Particularly,  one  physics  and  one  mathematics  textbook  taught  in  Lower  secondary
school in 3rd grade (ages 14-15), while two physics and two mathematics textbooks
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are taught in 2nd grade (ages 16-17) and one physics and one mathematics in 3rd grade
(ages 17-18) of Upper secondary school.

Mathematics and physics were selected as the concept of periodicity is presented to a
larger extent in comparison to other subjects that also involve periodicity, such as
astronomy or engineering books or chemistry. We restricted our analysis to topics that
are related to periodicity in the selected textbooks. Specifically, in mathematics, the
selected sections were related to trigonometry and periodic functions and in physics
they were related to periodic motions such as electrical and mechanical oscillations.
In this part we analyze only the ‘content presentation’ sections of each thematic unit
In order to implement our analytic plan, we divided the selected ‘content presentation’
sections into thematic units by restricting analysis to all the parts which aim at
presenting new mathematical and scientific knowledge. In this part of our analysis we
excluded exercises and problems aimed to be solved by the students (usually placed at
the end of the units) and historical notes (placed as separate texts and usually printed
in different colour of paper) that have an informative character of the historical
dimension of aspects of periodicity in each field. We name these textbook sections as
‘content presentation sections’.
Our thematic unit is conceived as a part of the selected textbook section; it has a
beginning and an end; and has a relative independence in its content i.e. we can
identify and distinguish it from its neighbouring thematic units. Each thematic unit is
characterized by its thematic content (e.g. “Define periodic functions” or “Define
periodic motions”) or it has an easily identifiable central idea. One thematic unit
several times coincides with a textbook unit as it is defined by the author. But in some
cases we have to split the textbook unit in more than one thematic unit when a change
in its thematic content is identified. We analyzed a total of 72 thematic units—29
units from Mathematics and 43 units from Physics. Each thematic unit has a complete
conceptual meaning, which is supported and validated by a series of logical acts and
sequences of reasoning. It, also, has a logical structure, which is viewed in our study
as the argumentation developed in each thematic unit. Reasoning and argumentation
are the main focus of our analysis.

Subsequently, in order to characterize students’ practices related to the notion of
periodicity we analyzed exercises and problems aimed to be solved by the students,
usually  placed  at  the  end  of  the  units  and  we  name  these  units  ‘proposed  exercises
sections’.

The sample
In  the  Table  I.1  we  present  the  whole  sample  analyzed  (i.e.  units  of  analysis;  VRs;
proposed exercises).

Table I.1: The sample analyzed in the dimensions of textual units, VRs and proposed exercises

GENERAL SUBJECT SUBJECT GRADE_No Thematic units
VRs in content

presentation
sections

Proposed
exercises

Math_Gr9
(GYMNASIO) 2 8 7

Math_Gr11_Common Core
(GENERAL LYKEIO) 22 43 59

Math_Gr11_Scientific
(GENERAL LYKEIO) 3 5MATHEMATICS

Math Gr12_Positive & Tech
direction

(GENERAL LYKEIO)
4 7 19
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TOTAL MATHEMATICS 29 63 85
Phys_Gr9

(GYMNASIO) 8 11 2

Phys_Gr11_Common Core
(GENERAL LYKEIO) 15 36 32

Phys_Gr11 Positive & Tech
direction

(GENERAL LYKEIO)
5 20 -PHYSICS

Phys_Gr12 Positive & Tech
direction

(GENERAL LYKEIO)
15 54 24

TOTAL PHYSICS 43 121 58
TOTAL: 72 Thematic units, 184 VRs, 143 exercises

Data analysis
We explored each thematic unit looking for parts in which the text could be divided
and could function as appropriate units of analysis. We realized eventually that
reading and consequently understanding a thematic unit is related to the reasoning
process and the argumentation developed in this part of the chapter. Argumentation is
considered to be developed through everyday examples, empirical evidence,
explanations, proofs, definitions, calculations, type of visual representations and the
co-deployment of VRs and MsoR.
As a result our analysis followed the next steps:

In the first step, we identified parts of the text in the thematic unit that could be
considered as logical elements that develop a form of reasoning. These parts may
correspond to one or more sentences and the accompanying visual representations that
were characterized as modes of reasoning (MsoR). Stacey and Vincent (2009) used
this term for analyzing explanations in mathematics textbooks. Our use of MsoR is
that there are parts that state a syllogism crucial for the development of argumentation
in the whole thematic unit. Therefore, MsoR in this study has a rather functional than
structural character and characterizes a phase in the development of thematic unit’s
argumentation and an act in promoting conceptual understanding. Three criteria
guided our analysis in terms of MsoR: (a) the function of each mode of reasoning in
the argumentation developed in the thematic unit as a whole; (b) the data or evidence
on which  the  reasoning  is  based;  and  (c)  the  nature  of  the  warrants  or  the  backings
that support the reasoning explicitly or implicitly. One of our main concerns was that
the categories be appropriate for coding both science and mathematics texts, since
evidence and warrants may have a different ontology in each disciplinary field. The
technique of systemic networks (Bliss, Monk & Ogborn, 1983) has been adopted not
only as a form of representing our scheme of categories, but also as an analytic tool.
This means that it has been used throughout the analysis for the organization and the
continuous re-arrangement of categories and sub-categories as they emerged during
the analysis of mathematics and science texts.

Basic elements of the thematic units are the visual images (e.g., graphs, tables,
photographs), so, in the second step our focus of analysis was on the genre of VRs. In
the third step we analyzed the co-deployment of visual representation and the mode of
reasoning or how the visual representation supports the mode of reasoning. We
consider this co-deployment as part of the argumentation developed in the thematic
unit.

All the codes emerged from the analysis were negotiated among the two researchers.
Within a feedback loop, the codes were revised, eventually reduced to main
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categories, and checked in respect to their reliability until a satisfactory degree of
certainty/consensus was obtained. As a result, the final scheme of categories and
subcategories of MsoR, VRs genre and the categories of co-deployment of VRs and
MoR were formed. The final systemic networks produced were considered to be a
generalized scheme appropriate for both mathematics and physics texts on periodicity.
This analytic process offered an insight into the argumentation development in each
thematic unit and in particular, how it is formed as a synthesis of different MsoR and
different ways of co-deployment of MsoR & VRs. Finally, this approach gave us the
opportunity to explore possible links between the argumentation and the
conceptualization process, which may influence the reader’s understanding.

In the fourth step of our analysis, the emerging schemes supported the quantification
of our data (MsoR), VRs’ genre and VRs & MoR met in all the thematic units we had
selected for analysis. Quantitative findings show the frequencies that the categories
met across thematic units and across mathematics and physics.

In the fifth step of our analysis we analyzed the 143 proposed exercises by using an
adaptation of the analytical framework of MoR described above.

FINDINGS
From our data analysis seems that argumentation in the content presentation sections
in a school text is the combined outcome of three components: the modes of reasoning
(MsoR), the visual representations (VRs) and the co-deployment of VRs and MsoR.
In the first part we present each category and subcategory separately of each
component separately. In the second part we present results of our quantitative
analysis  of  all  the  above  categories  and  subcategories.  In  the  third  part  we  illustrate
typical forms of argumentation in mathematical and physics textbooks related to the
concept of periodicity based on two examples. In the last part we present our analysis
of the proposed exercises by adjusting the initial analysis to the analytical framework
presented above.

Modes of Reasoning (MsoR)
The final scheme of MsoR categories appears in Figure I.1 as a systemic network
(Bliss et al., 1983). Four mutually exclusive categories of MsoR were identified:
empirical, logical-empirical, nomological, and mathematical.

Modes of
reasoning

Empirical

Logical-
empirical

Explanatory

Recall experiences

General-specific

Systematic description

Specific-general

Techniques

Taxonomic

Initial claim

Main claim
Nomo-
logical

Mathematical

Experimental
evidence

Mathematical
evidence

Proofs

Fig. I.1. The systemic network (Bliss et al., 1983) of MsoR.
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Empirical MsoR
The empirical category includes parts of texts where the reasoning is based on
evidence that either recalls one’s everyday life experiences or is based on a systematic
description or demonstration of an experimental activity or everyday life situation.

Logical-empirical MsoR
The logical-empirical category includes parts of texts in which the connections of
evidence included in the unit to logical elements are more prevalent, and examples
and specific situations that are second-hand experiences are used to reach or
exemplify general statements. This category is further discerned into three
subcategories: general-specific, specific-general, and explanatory. The general-
specific MoR refers to applications of a law or general statement (e.g., definition)
stated previously in the unit. The specific-general MoR includes reasoning that
presupposes analysis and interpretation of instances of scientific situations
(phenomena) or organized empirical data in order to make the proper conclusion or a
generalization. In this MoR, two sets of reasoning were identified, depending on the
kind of evidence or data being developed: experimental evidence, when the reasoning
is based on instances of experimental activities that are mostly displayed using visual
representations, and mathematical evidence, when the reasoning is based on
mathematical representations (e.g., graphs, organized arithmetical data) or on
mathematical models (e.g., the unit circle). The explanatory MoR includes text that
tries to explain theoretical ideas or exploit invented situations in order to explain a
particular phenomenon. This type of reasoning shares common characteristics with
the specific-general MoR but is differentiated due to its function in the argumentation
developed in the thematic unit, which means that its role is mainly to explain why a
theoretical issue is true rather than to infer from the particular to the general case.
The aim of this MoR is to provide everyday examples of a certain periodic motion
type to motivate readers’ interest. In mathematics, this MoR mostly involves
exemplification with numerical data of a mathematical formula of a definition that has
been proved or given in the previous MoR. In such examples, readers are normally
practicing a technique but are also expected to appreciate the range and scope of the
generality  of  the  theorem  proved  before.  This  MoR’s  general  function  is  to  help
readers gain a personal sense of a definition or general principle in science (Anderson
& Smith, 1987) and mathematics (Bills et al., 2006).
An  example  of  specific-general  MoR  based  on  experimental  evidence  is  from  a
physics textbook’s thematic unit on the simple pendulum. The text is accompanied by
a visual representation (i.e., images of the pendulum in different positions
simultaneously). The text reasons as follows: When the particle is at the equilibrium
position, the string is vertical. If the object is not at the equilibrium position, it
oscillates between the end positions B and C. The forces that determine its movement
are the weight and the force that is exerted by the string. The caption explains why the
pendulum performs this type of periodic motion: In every position, the weight W2
component moves the particle to the equilibrium position. Every statement in this unit
of analysis supports a process of generalization. This MoR is an integral part of the
nature of science itself because scientists usually rely on it to lay the ground for new
research and to support or refute their research hypothesis (Norris & Philips, 2003).
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Nomological MsoR
The nomological category includes parts of texts that are general statements (e.g.,
theorems, laws, or definitions). Kublikowski (2009) said that this category is
characterized by its logical and rhetorical emphasis on the pragmatic and persuasive
role of definitions considered as an integral part of argumentation. We discerned three
subcategories in this MsoR: initial claim, main claim, and taxonomic. Initial claim
uses statements based on a known law or a general principle that function mostly as
the starting point of reasoning in the argumentation developed in a thematic unit. In
most cases, reasons are not offered to justify these statements; however, they play a
dominant role in the argumentation developed. Main claim uses statements
formulated as the result of previous logical acts reasoning central to a thematic unit.
Taxonomic includes statements that clarify categories of periodic behaviors.

An example of the initial claim MoR is  taken  from  the  2nd year upper secondary
school mathematics unit “Graphing the sine function”. In order to define the period
(T) and study the sine function, the text states: Since the function f(x) = sinx is
periodic with period 2π, it is sufficient to study it in an interval that has length 2π, e.g.
[0, 2π]. The text continues by using this claim to graph the sinx function.
A main claim MoR encapsulates the main points of the unit; it is usually recorded in
the text in a distinctive way (e.g., bold font) in order to attract the readers’ attention.
This reasoning can be considered to be the outcome of logical acts made before in
other MsoR; for example, it may follow a descriptive empirical or specific-general
MoR. The main claim MoR is a definition or general principle that establishes
specific, conceptual aspects of periodicity (e.g., definitions of linear harmonic
oscillations  or  periodic  functions).  Our  analysis  indicates  that  this  MoR  plays  a
significant role in the development of argumentation in mathematics and science
textbooks.

A characteristic example of the taxonomic MoR is taken from a physics textbook. The
text presents the uniform circular motion as a part of a wide category of motions that
are called periodical. This MoR asks readers to categorize, describe, and classify
different types of periodic phenomena in a hierarchical manner.

Mathematical MsoR
The mathematical category includes parts of text based on applying mathematical
relationships and techniques in both mathematics and science; the emphasis here is on
the instrumental and functional character of reasoning. We discerned two
subcategories: techniques and proofs. In the techniques MoR, reasoning is based on
techniques, usually well-known mathematical ones; for example, sketching a graph
from a given table of values, solving an equation graphically, or providing a sequence
of numerical operations. In the proofs MoR, reasoning has a pure deductive character;
in the selected thematic units, it is based mainly on algebraic manipulations; for
example, formal mathematical demonstrations (Stylianides, 2009).

An example of the proofs MoR is provided from a physics thematic unit (i.e., energy
in the simple harmonic oscillation). The text proves that the total energy is constant
even though the amounts of the two forms of mechanical energy, kinetic and potential,
change periodically over time: The total energy of the system in a random position is
given by the relation E = K + U. Hence, E = ½ mω2Α2cos2ωt + ½ mω2Α2 sin2ωt = ½
mω2Α2 (cos2ωt + sin2ωt) = ½ mω2Α2. In proofs, the aspects of periodicity are usually
met in the form of symbolic representations of the sinusoidal functions.
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Visual representations’ (VRs’) genre
In terms of the genre of the VRs, five main categories are defined: the photographs,
the natural drawings, the schematic representations, graphs and Tables. Although
these categories are content free, the sub-categories are related to the features of the
content concerning periodicity.
So, photographs have been found to present either instances of either every day life
examples or natural periodic phenomena or technological devices performing periodic
motions.

The  category  of naturalistic drawings has been found to present either naturalistic
drawings of every day periodic phenomena or other no periodic images.

The category of schematic representations has been found to present periodic motions
circular or elliptical variations; mechanical oscillations; or synthetic variations or non
periodic.
The category of graphs has been found to present sinusoidal curves or other periodic
curves or non periodic. The last category is the tables.

Co-deployment of VRs & MoR
Four mutually exclusive categories concerning the role of VR in reasoning have been
identified: (a) the embodying category: when the VR and/or its caption supports the
reasoning by presenting in a bodily form an aspect of the MoR is related to; (b) the
category of VR as the starting point: in this case the reasoning starts from the specific
visual  representation  and  is  further  developed;  (c)  the  category  of  VR  as  the
fundamental tool of reasoning. In this case, the reader needs to be based on the VR
throughout the reasoning process; (d) the category of product VR: in this case the VR
functions as the final product of the reasoning developed.

Qualitative analysis of the argumentation developed in two thematic units
In this section, we attempt to reveal the development of argumentation as a synthesis
of a sequence of MsoR in two thematic units: mathematics and physics. We consider
that VRs’ genre and the co-deployment of VRs & MsoR are playing a fundamental
role in the argumentation as well. A key aim is to reveal how argumentation unfolds in
the articulation of the new knowledge.

The mathematical text is from the subject of trigonometry, and its thematic content is
“Graphing the sinx function.” The physics text is from the subject of oscillations, and
its thematic content is “Defining the linear harmonic oscillation”. These thematic
units study periodic variations in different contexts. In mathematics, it is the
counterclockwise  rotation  of  a  point  M(x,y)  on  the  unit  circle;  in  physics,  it  is  the
motion of a body that is attached to an ideal spring. We chose these thematic units for
the following reasons. In both texts, the periodic variations are modeled by the
sinusoidal curve. In mathematics, this curve models the variation of the y-coordinate
of the point M(x,y); in physics, the same curve models the time variation of the
displacement of a body that oscillates vertically with the help of an ideal spring. Both
texts are addressed to the same student group (i.e., 2nd year upper secondary school).
Moreover,  both  thematic  units  exhibit  a  typical  form  of  knowledge  presentation  for
periodicity in the two subjects. According to the Greek curriculum, the mathematics
unit precedes the physics unit.
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Argumentation in the mathematics text (Figure I.2) starts by defining the period T of
the periodic motion and by asking readers to recall that sinx represents the y-
coordinate of the point M(x,y) on the unit circle.

We consider these as nomological MsoR because these parts of the text are given
statements that function as initial claims on which the next MsoR are based. The text

Nomological, initial
claim MsoR

Logical-
empirical,
specific-general,
mathematical
evidence MoR

Mathematical,
techniques MoR

Logical-
empirical,
explanato ry MoR

Nomological,
Main claim MoR

Fig. I.2. Analysis of mathematics text (Andreadakis et al., 2012. pp. 75-77).
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continues by asking readers to follow the y-coordinate of the point M(x,y) as it rotates
around the unit circle. Readers have to interpret that the increase or decrease of the y-
coordinate corresponds to an increase or a decrease of the function y = sinx.
We consider this MoR as logical-empirical and particularly specific-general, which is
based on mathematical evidence identified on the unit circle representation. The
argumentation then employs mathematical techniques (i.e., graph the sinusoidal
function), and the text then defines the curve as sinusoidal. This is characterized as
nomological and  functions  as  a main claim MoR. The text concludes by visually
representing a sinusoidal curve and then argues the odd property of the sinusoidal
function. This is considered as a logical-empirical, explanatory MoR because it uses
the basis of semi-empirical evidence (i.e., the visual representation) to explain the
function’s property.

In this thematic unit there are five VRs (one schematic representation of circular
variation, the trigonometric circle, two tables and two sinusoidal graphs). In the first
paragraph the reasoning is based on the trigonometric circle. The role of this
mathematical model in the particular mode of reasoning is fundamental since the
reader must reflect on this VR in order to comprehend the reasoning developed in the
main text. The two tables are the starting points of the mathematical MoR while the
first sinusoidal curve is the product of this MoR. The second sinusoidal curve plays a
fundamental role in the explanatory MoR that concludes the argumentation of this
thematic unit.
Argumentation in the physics text (Figure I.3) starts with a systematic description
MoR that is produced by part of a text and an accompanying visual representation
where an enacted experience of an experimental activity is presented. The justification
proposed is made with the help of empirical measurements of the movement of a
spring with the main goal of defining its period.

The argumentation continues by producing a table and the corresponding graphical
representation categorized as a mathematical technique MoR. Next, even though it is
based on experimental methods, the sketching of the sinusoidal curve has an obvious
intention  of  generalizing  the  outcomes  of  this  experimental  activity  since  the
reasoning points to the fact that the sinusoidal graph represents a linear harmonic
function. Therefore, this form of reasoning is characterized as logical-empirical,
specific-general MoR based on experimental evidence. This MoR sets the foundation
for formalizing the physical event in later studies. The definition of linear harmonic
oscillation emerges as the result of the previous inferences and is characterized as
nomological MoR functioning as a main claim. This is a logical-empirical,
explanatory MoR that ends the argumentation by addressing the necessary conditions
for the success of the experiment. The last MoR is characterized as empirical and
provides a systematic description of the situation under consideration.
In this thematic unit there are five VRs (one schematic representation of mechanical
oscillations; one table, two graphs (one not finished and one sinusoidal) and a
schematic representation of synthetic periodic variations. In the first paragraph the
reasoning starts from the VR and ends with the table. The two graphs are the product
of the experimental mode of reasoning while the sinusoidal graph plays a fundamental
role in the nomological main Claim MoR. The last graph plays a embodying role in
the empirical mode of reasoning that concludes the argumentation of this thematic
unit.
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Issues emerged from the qualitative analysis of the argumentation developed in two
thematic Units
Our analytic approach on these two thematic units reveals how argumentation is
produced across two directions: the sequence of MsoR and the unfolding of the

Empirical,
systematic
description MoR

Mathematical,
techniques MoR

Logical-
empirical,
specific-general,
experimental
evidence MoR

Empirical,
systematic
description MoR

Nomolological,
main claim MoR

Logical-
empirical,
explanatory MoR

Fig.I.3. Analysis of physics text (Alexaki et al., 2012, pp. 204-206.
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conceptual aspects of periodicity. We noticed initially that, for the study of both
periodic motions, the specification of the period is central; however, it is
accomplished differently. In physics, the period needs to be measured empirically; in
mathematics,  it  is  taken  as  granted  on  the  basis  of  the  claim that  emerged  from the
definition of sinx as a periodic function.
The sinusoidal curve is considered the main object of study in both thematic units.
The reasoning route, however, follows different paths based on the different nature of
tools and actions employed. In mathematics, the curve is the product of mathematical
evidence-based reasoning on the variation of the y-coordinate of the point M(x,y) as
moving around the trigonometric unit circle, a theoretical functioning entity of
mathematics; in physics, the curve is the product of experimental evidence-based
reasoning, which stems from the study of the motion of a body on an ideal spring, and
the means through which the linear harmonic oscillation is defined. Hence, the goal in
each thematic unit seems to be different: in mathematics, the process of drawing the
sinusoidal graph is the main task; in physics, this graph functions as the necessary
condition in order to define linear harmonic oscillation. The definition of the linear
harmonic oscillation (main claim MoR) is validated by an additional experiment
through which readers will be persuaded and convinced about the scientific claim.

Analysis of the sequence of MsoR in these two thematic units raised two key issues.
The first issue relates to ontological differences concerning the concept of evidence in
mathematics and physics. By tracing the different paths of reasoning in these two
settings,  our  analysis  offers  insights  into  the  different  rules  that  prevail  in  each
disciplinary community concerning evidence-based reasoning. Experimental evidence
in the physics textbook is strengthened by the collection and use of new data;
mathematical evidence in the mathematics textbook is considered as beyond
controversy and, as a result, no further strengthening is needed. The second issue
relates to pragmatic considerations on the text understanding in relation to the
scientific argumentation discourse. In the physics text, the claim that the curve
produced by the experimental activity is a sinusoidal curve appears arbitrary. A
surface view is that readers must simply take the mathematical product (e.g., the
image of the sinusoidal curve) and use it as a tool in the process of meaning making
of the physics text. Our analysis indicates that if readers do not pass through certain
MsoR resulting in the sinusoidal curve then important conceptual or logical elements
may be missing. It appears that, in the context of physics, the way mathematical tools
are used in reasoning is elliptic and the understanding of the text is based on hidden
speech acts (e.g., explaining that the produced curve is the sinusoidal curve). On the
other hand, the mathematics text follows a linear and coherent reasoning in terms of
the logic, using consistently the mathematics discourse. Furthermore, in the
mathematics context, efforts to bring tools and materials concerning reality —
empirical MsoR — seem to be neglected.

The role of VRs is central in each thematic unit since they play an important role in
the argumentation developed. Images of periodicity share common characteristics.
For example, the sinusoidal curve and the circular periodic variations appear in both
texts. Physics text provides additionally images of oscillatory motions. In both texts
the  role  of  all  images  is  fundamental  or  the  staring  point  or  the  product  of  a  MoR.
Only in physics text an image plays an embodying role in the MoR developed. This
role shares empirical characteristics and brings the reader closer to the periodical
behaviour. The issue that this VR represents a synthetic periodic motion (circular &
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oscillatory)  adds  to  its  contribution  to  readers’  understanding  of  the  notion  of
periodicity.

Results of our quantitative analysis on the dimensions of MsoR, VRs’ genre &
co-deployment of VRs & MsoR

Modes of Reasoning
To provide an overview of  the  nature  of  the  MsoR  in  the  different  subjects  in  the
Greek textbooks cornering periodicity, we present some simple quantitative measures.
Table I.2 shows frequencies for certain type of MsoR in all thematic units.
Particularly, we counted all MsoR identified in all thematic units for each subject. The
proportion of each type of MoR reported was calculated for the total number of the
modes of reasoning identified in each subject (Mathematics N= 138; Physics N=231).
For example, we identified N=14 Mathematical proofs in mathematics texts and 13 in
physics texts. Hence the proportion of this MoR in mathematics is
14/138*100=10.14% and in physics is 13/231*100=5.63%.

Table I.2: Results of the quantitative analysis in the dimension of MsoR
Subjects

Modes of reasoning Mathematics
N=138

(%)

Physics
N=231

(%)
Recalling experiences (E1) 0.00 1.73
Systematic description (E2) 2.90 13.85Empirical
Sum of E1 & E2 2.90 15.58
General-specific (LE1) 6.52 12.55

Experimental evidence
(LE2exp) 0.00 8.23Specific-

general Mathematical evidence
(LE2m) 23.19 9.96

Explanatory (LE3) 5.07 6.49

Logical-
empirical

Sum of LE1, LE2exp, LE2m & LE3 34.78 37.23
Initial claim (N1) 15.22 9.09
Main claim (N2) 31.16 26.84
Taxonomic (N3) 0.00 3.03Nomological

Sum of N1, N2 & N3 46.38 38.96
Techniques (Mteck) 5.80 2.60
Proofs (Mpr) 10.14 5.63Mathematical
Sum of Mteck & Mpr 15.94 8.23

The empirical category of MsoR has very low appearance in mathematics (2.90%)
and low appearance in physics (15.58%). Particularly, the systematic description MoR
seems to be usual in physics only in lower grades.
The logical-empirical category of MsoR seems to have almost the same appearance in
math  and  physics.  Despite  this  general  outcome  we  notice  some  differences  in
subcategories of this MoR among subjects. For example, the general-specific
subcategory seems to be more common in physics (12.55%) than in mathematics
(6.52%). This MoR general  function is to help the reader gain a personal sense of a
definition or general principle. Its significance is acknowledged in science (Anderson
& Smith, 1987) and mathematics (Bills et al., 2006) communities. The experimental
evidence appears only in physics (8.23%). This mode of reasoning is an integral part
of the nature of science itself, since usually scientists rely on it to lay the ground for
new research and to support or refute their research hypothesis (Norris & Philips,
2003). The mathematical evidence is met mostly in mathematics (23.19%) than in
physics (9.96%) texts.
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The nomological MsoR have a high appearance in both subjects, with a little lead in
mathematics.  It  seems  that  two  nomological  categories  are  high  privileged  in
mathematics and physics texts. These are the main claim and the initial claim that
considered as common reasoning techniques in both subjects. The taxonomic MoR is
met only in physics texts. Referring to neighbouring concepts of periodicity in a
taxonomic way could help the reader develop a flexible and functional knowledge,
but this seems not valued as a significant rational action in both subjects.
Finally, the mathematical category of MoR (mathematical techniques and proofs) has
with very low proportional appearance in math and physics (15.94% and 8.23%
respectively).

We place each category of MoR in a spectrum of logical acts from sensory
perceptions/experiences (empirical & logical –empirical MsoR) to abstract logical
thinking  (nomological  &  mathematical  MsoR)  (Fig.  I.  4).  Hence,  we  notice  that
physics keeps a balance between sensory perceptions and abstract thinking (52.81%
and 47.19%) respectively. Mathematics favours the abstract logical acts (62.32%)
than the sensory ones (37.68%).

Empirical

Logical -
empirical

General    Specific

Specific  General

Nomological
(definitions)

Mathematical

Sensory
perceptions

Abstract
thinking

Modes of
reasoning

Fig. I.4: The spectrum of logical acts (MsoR) from sensory perceptions to abstract thinking.

Some of the differences identified above are due to the nature of each epistemological
field (e.g. the absence of experimental evidence in mathematics, or the higher
appearance of mathematical MsoR in mathematics than in physics; the balance
between sensory perceptions and abstract thinking in physics). But some other
differences may indicate policies in each community (the privilege of abstract MsoR
in the argumentation developed in mathematics or in the main role of nomological
MsoR in both subjects).

The Visual Representations’ (VRs’) genre
In mathematics we met 63 VRs in the 29 thematic units analyzed while in physics we
met 121 VRs in the 43 thematic units analyzed.

The average number of VRs in each thematic unit is 2.17 mathematics (63/29=2.17)
and 2.8 in Physics (121/43). The relation of each VR with a mode of reasoning is 0.45
(63/138) in mathematics and 0.52 in physics (121/231). In general, the differences
among the subjects are very small.

Table I.3 presents the percentages of the categories of VReps in terms of their genre.
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Table I.3: Results of the quantitative analysis in the dimension of VRs' genre
Mathematics

N=63
(%)

Physics
N=121

(%)
Every day or natural periodic
phenomena (ph1)

0.00 13.22

Photos (images) Scientific devices performing
periodic motions

0.00 4.96

Every day periodic motions 3.17 13.22Naturalistic drawings No periodic motions 0 3.30
Circular periodic variations 46.03 5.79
Mechanical oscillations 0 19.83
Synthetic periodic variations 0 4.13

Schematic
representations

Non periodic 7.94 4.13
Sinusoidal curves 17.46 18.19
Other periodic graphs 6.35 2.48Graphs
Non periodic 0 8.26

Tables 19.04 2.48
It can be noticed that photographs of any type of periodic images are completely
absent  in  Mathematics  textbooks  while  almost  three  out  ten  (31.4%)  of  all  VRs  in
physics are either photos or naturalistic images of periodic motions. It is common
policy in Mathematics textbooks to avoid using photographs (that represent particular
instances) and prefer to use images that convey a generality (Herbel-Eisenmann &
Wagner, 2007).

On  the  other  side,  the graphs of sinusoidal functions are used in both Mathematics
and Physics texts and they are considered as the main graphical models of the periodic
behavior. The case of graphs that represent a repeated but non-periodical behaviour
appears only in physics (in the case of damped oscillations). It could be very helpful
for students to compare images that represent a periodical behaviour with images that
represent a repeated but non-periodical behaviour. In general, this type of images
usually called non-examples of a notion (Bills et al., 2006) and influence the
discernment of concepts. In our case, non-examples of periodical motion could used
to clarify boundaries between neighboring features of periodicity.
In the case of schematic representations the main image of periodic variation is the
circular  one  represented  by  the  trigonometric  circle.  One  out  of  two  VRs  in
mathematics falls  in this category. In Physics the most common periodic models are
mechanical oscillations.
Finally, charts and tables are used more often in the Mathematics textbooks (almost
20%) than in Physics textbooks (almost 2.5%). Usually this type of representations
organizing the information given in the main text or provide specific values of a
function or a phenomenon.

The co-deployment of VRs & MoR
Our analysis indicated 65 cases in mathematics and 128 in physics. Some times a VR
is  related  with  one  or  more  MsoR.  In  Table  I.4  presents  the  frequencies  of  the
categories of the function of VRs in reasoning in a tabular format as they are met in
the Mathematics and Physics texts.
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We can notice the prevalence of the embodying function of VRs in reasoning in
Physics texts comparing to the Mathematical ones. In this case the VR and/or its
caption support the mode of reasoning by presenting a concrete situation. This brings
the reader more closely to periodic phenomena.

Images  play  a fundamental role in mathematics and physics with a little lead in the
latter subject. Images as the starting point of reasoning are mostly in math than in
physics. Finally, VRs are almost equally the product of reasoning in mathematics and
in physics.

Issues emerged from our quantitative analysis of MsoR, VRs' genre & co-
deployment of MsoR & VRs
Our quantitative analysis provides a quick overview of the most and less preferable
reasoning practices adopted in mathematics and physics. This reveals differences in
the nature of each epistemological field and policies in each community.
The authors in Mathematics texts seem to avoid reasoning practices that are based on
corporeal MsoR, or VRs that refer to sensual perceptions (photos and/or naturalistic
drawings)  while  rarely  the  VR  functions  as  a  concrete  situation  (i.e.  plays  an
embodying  role)  on  the  MoR developed  in  text.  The  notion  of  periodicity  is  treated
mostly by nomo-logical & mathematical MsoR (62%); almost catholically (96%) by
schematic  representations  or  graphs  or  tables  while  VRs  rarely  (8%)  play  an
embodying role in the reasoning developed. All the above indicate that the emphasis
in math is on abstract ways of thinking and reasoning.
On the other side, the authors in physics texts support sensual aspects of learning
since three out of ten images are photos naturalistic drawings of periodic motions and
the same proportion play an embodying role in the MoR developed. Besides, they
keep a balance between reasoning that is based in sensory experiences and in abstract
logical thinking.

The fundamental images of periodic motions are circular in mathematics (the
trigonometric circle) and oscillatory in physics. There is a consensus in both subjects
on the periodical curve image since in both subjects two out of ten graphs are
sinusoidal curves in math and physics.

Finally, almost all thematic units ‘build’ their argumentation around a main claim,
nomological MoR. This adds to our perception that all thematic units in both subjects
are argumentative and not descriptive texts. This indicates that argumentation is
considered as a central activity in both subjects. We do not know yet if the teachers in
the two communities realize the central role of argumentation in their teaching
practice.

Table I.4: Results of the quantitative analysis on the dimension of co-deployment VRs & MsoR

Categories
Mathematics

N=65
(%)

Physics
N=128

(%)
Embodying (represents in a bodily
form) 7.70 30.49
Starting point of reasoning 33.84 19.53
Fundamental tool in reasoning 37.00 30.47
Product of reasoning 21.54 19.53
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Textbooks proposed exercises
Textbooks influence teaching not only with the way they present new knowledge but
with the type of proposed exercises as well (Mesa, 2004).
The proposed exercises are analyzed according to their demands on exercises, the type
of VRs and their contextual aspects.
We analyzed 85 exercises in mathematics and 58 in physics. In the initial analysis the
categories of demands on exercises were: identify a property on a mathematical or
experimental model, make simple or synthetic calculations, produce or proving a
mathematical or scientific outcome. By taking into consideration the reasoning
practices demanded by the students in each subcategory on exercises demands we see
that the case of identifying a property on a mathematical or experimental model as
corresponding to a Logical- empirical, specific-general MoR. The case of making
calculations (simple or synthetic) corresponding to a pure mathematical MoR. The
case of produce or proving a mathematical or scientific outcome corresponding to
combination of Logical-empirical (if a VR is present), Nomo-logical & mathematical
MsoR.

In terms on the VRs presented on the exercise two categories are defined: absence and
existence. The second category was further analyzed according to the following
subcategories: School type VR (we include schemes and figures), real life and
graphical representations. In terms of the contextual aspects that was supported with
the exercises the following categories emerged: context free, pseudo-context (where
the exercises on the surface seemed to be about real world problems and situations,
but actually they had little connection to the real world) and real life context.
In  Table  I.5  we  exemplify  our  analysis  on  two  typical  examples  taken  from  the
subject of mathematics and physics.

Table I.5: Examples of the qualitative analysis of the proposed exercises

3. A toy hangs with a spring from the ceiling and is 1m from the
floor. When the toy goes up and down, its height from the floor
counted in metres is h=1+1/3sin3t, t is the time in seconds.
(i) Calculate the difference between the maximum and the minimum
height (of the toy).
(ii) Evaluate the period of the oscillation.
(iii) Sketch the graph of the function for p20 ££ t .

Demands
(i) Identify properties

(ii) Make simple calculations
(iii) Produce a mathematical model

VRs
Existence
Context

Existence/pseudo-context

Reasoning practices demanded by the students
(i) Logical –empirical, specific-general MoR
(ii) Mathematical MoR
(iii) Combine nomo-logical & mathematical
(techniques) MsoR.
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A 0,2Kg body is in balance in a smooth horizontal surface tied from
the free side of a spring having 20N/m constant.
If the body is removed towards the axis of the spring and is left free:
a. show that a Linear Harmonic Oscillation is going to be performed
b. find its period.

Demands
(a) & (b) produce a scientific model

VRs
Existence
Context

Existence/pseudo-context

Reasoning practices demanded by the students
Combine Nomo-logical, Mathematical & Log.-empirical MsoR

The counting of frequencies of appearance of the final produced schemes in the form
of systemic network for the dimension of the demands on the proposed exercises are
presenting in the following table. In the last column we present the demands
according to the demanding or reasoning skills.
Table I.6: Results on the quantitave analysis on the demands of exercises

Demands of exercises
MATHEMATICS

No = 85
(%)

PHYSICS
No = 58

(%)

According to the new
framework

Identify a property 21* 19*
Logical- empirical, specific-
general MoR (math or
experimental)

Calculate 21* 37* Mathematical MoR

Prove a mathematical or a
scientific outcome 79* 71*

Combining Mathematical &
Log. –empirical & nomological
MsoR

* The sum is more than 100% since some times there are more than one tasks on the same exercise.

VRs' existence (either in exercice presentation or as an outcome) is very low in both
subjects. Besides, 90% of the proposed exercices in mathematics are context free.
This rate is lower in physics. Even physics rarely base exercises on real- life context.
Table I.7: Results on the quantitative analysis on the existence of VRs and
real-life context

Existence of VRs
MATHEMATICS

N =85
N= 14 (17%)

PHYSICS
N=58

N=11 (19%)

Contextual aspects
MATHEMATICS

N =85
(%)

PHYSICS
N=58
(%)

Context free (abstract) 90 59
Pseudo-context 9 26Existence Real life 1 16

Issues emerged from the analysis of the proposed exercises
In general there do not exist many differences in the reasoning skills demanded by the
students in the two subjects. The most common reasoning practice in both subjects is
the mathematical MsoR (appears in the majority of exercises in math and physics).
Furthermore, most cases of textbooks proposed exercises tasks are demanding a
combination of Mathematical & Log.–empirical & nomological MsoR.
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VRs are rare in mathematics and physics. Almost all mathematics exercises are
context-free while only 16% of the proposed exercises in physics are using the real
life context.

CONCLUDING REMARKS on PART I
The present study explored reasoning and argumentation in Greek mathematics and
physics texts in specific topics related to the notion of periodicity. Reasoning has been
investigated through the logical act created by a part of the text of a thematic unit, a
choice that differentiates our use of modes of reasoning from that of Stacey and
Vincent (2009). We adopt the position that textbooks aim to introduce their readers to
the conceptual aspects of scientific and mathematical knowledge and persuade them
for their value.
Particularly, we consider that the argumentation developed by an author in a school
textbook is a combination of analytical and rhetorical arguments, employed to
persuade the reader (who in our case could be a student or a teacher). Furthermore,
the function of the visual representations in relation to the reasoning developed in the
physics or mathematics text is investigated. In this study we argue that the VRs’ genre
and the co-deployment of VR and MsoR influence the argumentation developed in a
school text and consequently had a potential impact on how the notion of periodicity
is realized. Although the inherent logic of a concept presentation has been
acknowledged as important for a teaching plan (Koponen & Nousiainen, 2012), in our
study we have elaborated how the interrelationships of argumentation and
conceptualization are developed.

Inductive content analysis was applied on 72 thematic units and 184 Visual
Representations (VRs). Coding schemes of categories and subcategories of MsoR,
VRs’ genre, and the co-deployment of VRs and MsoR were produced. The main
categories of MsoR are empirical, logical-empirical, nomological, and mathematical
MsoR. We argue that each MoR plays a different role in conceptualizing aspects of
periodicity. The empirical MsoR attempt to direct readers’ attention to recall
experiences on periodic motions in real-life phenomena. The logical-empirical MsoR
link empirical evidence to general outcomes; therefore, studying the dynamic features
of certain instances of periodic phenomena could lead to understanding their general
characteristics or vice versa. The nomological MsoR indicate the epistemological and
ontological  aspects  of  periodicity  aimed  to  be  learnt  in  each  subject.  Finally,  the
mathematical MsoR usually provide support to scientific claims (e.g., proving that the
mechanical energy of an oscillation is always constant) or mathematical claims (e.g.,

proving that sinx + cosx is equal to ÷
ø
ö

ç
è
æ +

4
πsin2 x ), where representations of

periodicity are mostly symbolic in nature (e.g., sinx in mathematics texts or Asinωt in
physics texts). The main categories of VRs’ genre are photos, naturalistic drawings,
schematic representations, graphs and tables. The role of VRs in MsoR could be
embodied (when VR supports the MoR by presenting a concrete situation), the
starting point or the product of a MoR and fundamental (when the reader needs to be
based on the VR throughout the reasoning process). The photos and naturalistic
drawings of periodic motions help readers to visualize everyday periodic phenomena,
while the schematic representations and the graphs support more abstract ways of
thinking.
Quantitative analysis of the sequence of MsoR in two thematic units (one from
physics and one from mathematics) raised three key issues. The first issue is related to
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the ontological differences concerning the concept of evidence in mathematics and
physics. Experimental evidence in the physics textbook is strengthened by the
collection and use of new data, while mathematical evidence in the mathematics
textbook is considered as beyond controversy and, as a result, no further strengthening
is needed. The second issue is related to pragmatical considerations involved,
important for the text understanding, in relation to the scientific argumentation
discourse. For example, in the physics text, the claim that the curve produced by the
experimental activity is a sinusoidal curve appears arbitrary. Our analysis indicates
that if readers do not pass through certain MsoR resulting in the sinusoidal curve then
important conceptual or logical elements may be missing. The third issue is the
central role of VRs in the argumentation developed in each thematic unit in both
subjects.

The results of our quantitative analysis raise important issues as well. Almost all
thematic units in mathematics and physics ‘build’ their argumentation around a main
claim, which is a nomological MoR. This supports our perception that all thematic
units in both subjects are mostly argumentative and not descriptive texts. The authors
in Mathematics texts seem to avoid logical acts that refer to sensual perceptions
(empirical MsoR, photos, and/or naturalistic drawings), while rarely the VR
concretizes (represents in a bodily form) the MoR developed in text. On the other
side, the authors in physics texts support sensual aspects of learning since three out of
ten images are photos and naturalistic drawings, that means that they represent in a
bodily form the MoR they are related to. Besides, they keep a balance between
reasoning that is based in sensory experiences and in abstract logical thinking. The
above outcomes indicate different practices in mathematics and physics textbooks.
Physics  try  to bring the notion closer to readers’ sensual experiences, while in
mathematics there is an emphasis on abstract ways of thinking and reasoning.
Although some of the above outcomes are due to the different epistemological nature
of mathematics and physics (e.g., the fact that physics brings every day conceptions
about periodicity closer to readers’ experiences) some other indicate the different
practices adopted by the two communities. For example, it is common practice in
Mathematics textbooks to avoid using photographs (that represent particular
instances) and prefer to use images that convey a generality (Herbel-Eisenmann &
Wagner, 2007). This practice is purposeful, since authors believe that these images do
not support a ‘proper mathematical’ argument. Although recent research has stressed
the decisive and prominent role of bodily actions and gestures in students’ elaboration
of elementary concepts, as well as abstract mathematical knowledge (Núñez 2000),
this is neglected in Greek math textbooks. Finally, there is a consensus in both
subjects on the use of periodical curve image, since two out of ten VRs are sinusoidal
curves in both subjects.
Furthermore, our analysis indicates that the absence of any of the categories of MsoR
and VRs could result in missing conceptual elements of periodicity that are important
for  understanding.  In  this  way we argue  for  the  importance  of  argumentation  in  the
conceptualization process.
The  proposed  exercises  mostly  require  of  students  to  develop  synthetic  logical  acts
(Logical-empirical, nomological and mathematical MsoR). The qualitative
comparison on the reasoning practices adopted in the two textbook sections ‘content
presentation’ and ‘proposed exercises’ raises some important issues as well. The
issues concern the existence of VRs and the use of real life examples as the context of
the exercises. Particularly, although the role of VRs is fundamental in the ‘content
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presentation sections’ in both subjects their presence in the ‘proposed exercises
sections’ is relatively low. In the ‘content presentation sections’ physics use real life
examples in a form of modes of reasoning or images, this is not the case of the
‘proposed exercises sections’. The real life context is mostly absent in physics
exercises, while it is completely absent in mathematics. So, students when asked to
solve the proposed exercises rarely are engaged in interpreting VRs. As a result,
modelling activities with real-life periodic motions seem  to  be  neglected  in  both
educational communities, while mostly abstract conceptions of periodicity are
stimulated by the solutions to exercises and problems in the given sample.
In this case, the balance between reasoning that is based in sensory
perceptions/experiences and in abstract thinking identified in the ‘content presentation
sections’ in physics does not been preserved in the ‘proposed exercises sections’.
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Ch. 3
PART II

“Focusing on Undergraduate Students’ & Secondary Teachers’ Reasoning
Practices about the Notion of Periodicity”

INTRODUCTION

Rezat (2006) argues that mathematics textbooks should not be a subject to analysis
detached from its use. The tetrahedron model illustrates the complex relationships
among the four constituents of the didactical situation—teacher, students, school

content knowledge (mathematical or scientific) and
artefacts (in our case textbooks) that mediate the
pedagogical practice in school The whole tetrahedron
is a comprehensive model of the didactical situation in
the sense that it encompasses the interplay of artefacts
(textbooks), teachers and students in the construction
of school knowledge. All four constituents are
interlaced beyond the possibility of separation.

In the first part (Part I) of this report our focus was on
the argumentation developed in textbooks. In this part

(Part II) our motivated research question is "how students’ knowledge and teachers’
practices are influenced by the argumentation and reasoning practices adopted in
textbooks".
In this part of the report we focus on undergraduate students’ argumentation practices
when they had to interpret secondary level texts and VRs on periodicity and teachers’
pedagogical practices when teaching specific thematic units on periodicity and when
they are handling students’ justifications.

THEORETICAL BACKGROUND

Teachers' & students' dependence on textbooks
Students in order to understand a school text they have to realize the argumentation
developed by the author. Love and Pimm (1996) note, that although the implied
relation between the reader and the text is inherently passive, “the most active
invitation to any reader seems to be to work through the text to see why the particular
‘this’ is so” (p. 371). Chi and her colleagues’ (Chi, deLeeuw, Chiu & LaVancher,
1994) research in the science context highlighted the importance of the argumentation
developed in textbooks in the meaning-making process. Specifically, they argue that
students, in order to understand the text material, generate self-explanations, since
even quality expositions require the reader to fill in substantial details.
As students construct their understandings of the nature of mathematics or science
they will draw to different extents on the textbook, on their teachers’ speech and
actions and on their previous experiences. On the other side, where teachers are
insecure in their own subject knowledge they are likely to rely heavily on the forms of
definition and argumentation that are provided for them in published resources.
Haggarty and Pepin (2002) note that in England, while students themselves make
relatively little use of textbooks, their teachers use them extensively in planning
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lessons. In this way textbooks have a strong influence, whether direct or indirect, on
students' understanding.

Argumentation and students' conceptualization
Despite the numerous studies on argumentation and reasoning, there is limited
understanding of how argumentation practices could influence students’
conceptualization.

In the case of mathematics, Lin and Yang’s study (2007) is an example of an attempt
to make such links by analyzing the interrelationship between students’ reading
comprehension of mathematical proofs and their content knowledge. Douek’s study
(1999) is another attempt that aimed at detecting productive links between context-
related argumentation and conceptualization.
Besides, a number of recent research projects examined the impact of argumentation
on conceptual understanding in science. For example, Jime´nez-Aleixandre and
Pereiro-Mun˜oz (2002) who found that the involvement of students in argumentation
and decision making about environmental management resulted in them becoming
knowledge producers, not because they created new knowledge, but because they
applied knowledge to practical contexts, combined ecological concepts, and
integrated conceptual knowledge with values. Venville & Dawson (2010) explored
the impact of classroom-based argumentation on high school students’ argumentation
skills, informal reasoning, and conceptual understanding of genetics. The importance
of the findings are that after only a short intervention of three lessons, improvements
in the structure and complexity of students’ arguments, the degree of rational informal
reasoning, and students’ conceptual understanding of science can occur. The findings
also provide evidence to show that training students in argumentation and having
them participate in whole-class argumentation about socio-scientific issues resulted in
them being able to produce more rational written arguments.

Teachers' pedagogical practices and reasoning
The importance of understanding and improving students’ reasoning has been greatly
stressed as teachers’ instrument to enhance both teaching effectiveness and learning
abilities. Recent approaches have focused on the structure, on the completeness and
the nature of arguments, their logical properties and their content.
According to reform documents, teachers are expected to teach proofs and proving in
school mathematics and engage in inquiry and argumentation activities in science.
In the mathematics context, Lampert (1990, p. 32) describes pedagogical teachers’
practice in traditional school classrooms as follows:

Teachers tell students whether their answers are right or wrong, but few teachers
engage students in a public analysis of the assumptions that they make to get their
answers. Even when teachers give an explanation rather than simply stating a rule to
be followed, they do not invite students to examine the mathematical assumptions
behind the explanation, and it is unlikely that they do so themselves […].

On the other side, in a pedagogical practice that is based on learning mathematics as
participating in the social setting where argumentation and reasoning is a central
activity in the classroom…

[participants] arguing about what is mathematically true; they move around in their
thinking from observations to generalizations and back to observations to refute their
own  ideas  and  those  of  their  classmates  …  they  put  themselves  in  the  position  of
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authors of ideas and arguments; in their talk about mathematics, reasoning and
mathematical arguments (ibid).

Nicol & Crespo (2006) study investigates how four prospective teachers interpret and
use textbooks while learning to teach mathematics during university coursework and
practicum teaching. Results indicate that prospective teachers had varied approaches
to using textbooks ranging from adherence, elaboration, and creation. Factors
influencing how they engaged with texts include their practicum classroom setting,
access to resources, and their understanding of mathematics. Pre-service teachers’
attempts to modify textbook lessons raised pedagogical, curricular, and mathematical
questions for them that were not easily answered by reference to the textbooks or
teacher’s guides.
Tabach, et al., (2010) examined the position of secondary school teachers with regard
to verbal proofs. Fifty high school teachers were asked to evaluate given justifications
to statements from elementary number theory. Teachers are not aware of students’
preference for verbal justifications while about half of the teachers rejected correct
verbal justifications. They claimed that these justifications lacked generality and are
mere examples.
In the scientific context, Lawson’ (2004) study focused his attention in the case of
hypothetico- deductive reasoning in order to test alternative explanations. He argues
that science teachers’ effective instruction mirrors the practice of science where
students confront puzzling observations and then personally participate in the
explanation  generation  and  testing  process  –  a  process  in  which  some of  their  ideas
are contradicted by the evidence and by the arguments of others.
Koponen & Nousiainen (2012) argues on the logical order of argument, where the
ontology, facts and methods all have their proper places and are related to each other
correctly so that inferences can be made in a reliable and justified manner.

Mahidi (2013) examined the role of topic in the hierarchical organizations between
knowledge of teachers and textbooks. The hierarchical organizations of teachers are
more comparable to textbooks for the topic of Biot-Savart law than the Ampère’s law.
On the other side, it was observed that the knowledge arrangements of Ampère’s law
were more hierarchical, while the knowledge organizations of Biot-Savart were more
clustered.

Finally, Oherman & Lawson (2008) argue that science and mathematics teachers,
curriculum developers and textbook authors owe it to students to more carefully
explicate the similarities, differences, and limitations of knowledge-generation
processes in both fields, particularly the meanings of the terms proof, disproof,
hypotheses, predictions, theories, laws, conjectures, axioms, theorems, and postulates,
so that students have a better chance of avoiding misconceptions and/or confusion
about how these aspects of science and mathematics work. The reason for
researchers’ argument is that many science and mathematics teachers have too little
understanding of the knowledge generation process in their own discipline, much less
adequate understanding of the process in their sister discipline to help students acquire
meaningful understanding.
Our epistemological view on teaching is that it consists of generating and keeping in
movement contextual activities which are situated in space and time and heading
towards a fixed pattern of reflective activity incrusted in the different school cultures
(in  our  case  mathematics,  science  and  engineering).  This  movement  has  three
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essential characteristics: the object (that, in our case, is the notion of periodicity) it is
not a monolithic or homogenous object. It is an object made up of layers of generality
and these layers will  be more or less general  depending on the characteristics of the
cultural meanings of the fixed pattern of activity in question. An example of this is the
kinaesthetic movement of a child that plays in a playground swing by forming a
periodic motion in a certain time interval and the graphical representation of the
above movement as height-time variation. The layers of generality are noticed in a
progressive way by the student. The learning process consists of finding out how to
take note of, or how to perceive these layers of generality (Radford, Cerulli, Demers,
& Guzmán, 2004).

Purpose of PART II of our study, Research Questions and Research Activities
We divide this part of our study in PART IIa and PART IIb.

In PART IIa we focus on undergraduate students' meaning making of textual and
visual elements of school texts on periodicity. We analyze their justifications on
certain tasks related to aspects of the notion and we try to detect potential links
between conceptualization and argumentation. The title of this part of our research is
"Undergraduate students’ justifications in the process of making sense of textual
and visual elements on periodicity” The undergraduate students are in scientific
direction fields who passed a national exam in order to attend their undergraduate
studies. Part of their exams where thematic units on periodicity (e.g.. mechanical and
electrical oscillations). Besides, during their undergraduate studies all students in
scientific direction fields encounter aspects of periodicity (usually in in their first year
Calculus  and  Fourier  analysis  courses).  Fourier  analysis  is  a  prerequisite  course  for
studying signal processing in the fields of Informatics and Electronics. Thus, for all
the participants, periodicity is considered as an important scientific notion not only for
their academic studies, but for their professional life as well.

In this part of our study we take the position that understanding the notion of
periodicity and its properties involves creating a coherent framework where ideas and
educational practices in different school subjects are meaningful at an individual
level.  By adopting  the  perspective  that  periodicity,  as  an  abstract  notion,  is  realized
through specific situations where it takes its meaning (Radford, 2013) we design three
different research activities (case studies) where different aspects of the notion are
involved. Our main interest is how students perceive periodic motions and its
graphical representations. Our resources are mostly mathematics, physics and
engineering secondary school textbooks.
Our main research questions in this part of our study are:

· How do undergraduate students meaning making of verbal and visual
elements is related to specific justifications (reasoning practices)?

· If and how we can detect potential links between conceptualization and
the above justifications?

In order to accomplish our aims we designed the following three research activities
where students in open-ended questionnaires are responding in the following tasks:

Activity 1: Interpreting and connecting the textual and the visual components of
school texts on periodicity.

Activity 2: Making sense out of periodical and non - periodical motion graphs.
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Activity 3: Relating prospective teachers’ explanations and their levels of content
awareness.

We consider that the above three research activities could provide us evidence on
students' justifications (reasoning practices) when interpreting verbal and visual texts
on periodicity in three contexts (physics, mathematics and technology). Activity 1 is
developed in a physics context (the texts and the VRs are taken from physics Greek
textbooks). Activity 2 provides a mathematical context by pointing only on the
mathematical models of periodical behaviours. Activity 3 provides a technological
context where the synthesis of the above knowledge is necessary in order to provide
sufficient explanations of a text on car mechanics. Students’ answers could help us to
detect productive links between reasoning practices and conceptualization.
In PART IIb our focus is on secondary mathematics and science teachers’
pedagogical practices when teaching specific thematic units on periodicity. The title
of this part of our study is: “Teachers’ pedagogical tools when teaching periodicity”
Particularly, we are seeking to discover how educators in the various disciplines
institutionalize their students' knowledge on aspects of periodicity and how they use
texts’ inherit logic when teaching aspects of periodicity. In order to investigate this
general issue we designed and conducted two research activities. Both were designed
in a unified way for science, mathematics and engineering educators. In this manner,
we expect to identify differences in educators' practices when they teach aspects of
the notion of periodicity.
Teaching aspects of periodicity in mathematics and science involves images of
instances (or aspects or properties or models) of the notion. These representations in a
school text are expressed either visually (e.g. pictures, diagrams or maps) or
symbolically (e.g. equations or formulae). The role of images of a common notion in
different teaching practices remains under investigated. We consider that the
representations of the notion of periodicity are cultural resources which act as bearers
of distributed intelligence (Pea, 1993) and that they carry, in a compressed way,
socio-historical experiences of cognitive activity and artistic and scientific standards
of inquiry (Lektorsky, 1995). These ubiquitous mediating structures both organize and
constrain educators' teaching practice and provide to students a specific, conceptually
structured space to think (Radford, 2013). Are the educators in the different
disciplines adequately equipped to handle the above issues? This is another aspect we
try to investigate in this study (Activity 1-questionnaires).

Our research activities and the relevant research questions are as follows:

Activity 1- questionnaires “Teachers’ justifications and fundamental images on
periodicity”
We designed a questionnaire with open-end questions and placed emphasis on the role
of visual representations (VRs) in educators' teaching practices when aspects of the
notion are presented and how they handle specific students’ justifications (PART IIa).

Our main research questions are:

· Which images are fundamental in their teaching practices?

· How do they argue against students' misunderstanding of the periodic
behaviour of two graphical representations?

Activity 2- interviews: “Teachers’ judgments when modifying textbook
argumentation”
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We interview educators on the role of textbook argumentation in their teaching
practice and ask them specifically about the role of the everyday examples they use
when introducing aspects of periodicity:

· What is the role of everyday examples in their teaching practices?

· Do they follow the knowledge organization in texts in specific thematic units
related to the notion of periodicity?

A common task in Act1& Act2 “Teachers’ suggestions”
In both activities, we ask teachers’ suggestions on how they could contribute to their
students' development of a unified way of understanding periodicity.

PART IIa

Documentation of undergraduate students’ thinking and reasoning

METHODOLOGY

The participants
The participants in all research activities were 288 undergraduate students from Greek
University and Technological Institutions and took part in three research activities. In
Table II.1 we present the number of participants in the different departments in each
research activity (we implement three research activities). The participants filled
open-ended questionnaires.
Table II.1: The number of participants from the different departments in different activities
Institutions Departments No of Activity No of participants

1 41Electronics 2 43
Informatics 2 31
Structural Engineers 1 13

1 16

Technological
Institutions

Mechanical Engineers 3 86
Bioinformatics 2 39Universities Mathematics 2 19

Total 288 participants
In this report we present the methodology and the results of the three research
activities that took place in this study.

Activity 1: "Interpreting and connecting the textual and the visual components
of school texts on periodicity"(context:
physics)
A research questionnaire has been developed
with open-ended questions on the topic
"Study of the motion of the linear spring".
This questionnaire was distributed to 70
undergraduate engineering students from
four different departments in two different
Technological Institutions (13 structural
engineering, 16 mechanical engineering and
41 from the field of Electronics). The
students were in the second semester of their
studies. This topic was very familiar to them

Photo 1
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since  in  the  first  semester  was  pat  of  their  studies.  The  text  (Photo  1)  and  the  VR
(Photo 2) that they had to interpret was from their secondary school year textbooks.

Task 1
The book extract which is presented in Picture 1 shows an experimental arrangement
that refers to the study of the movement of the spring and is included in the 3rd Grade
Secondary School Science book. The fist task (extract from Physics, Grade 9
textbook), was about Hooke's Law (i.e. the magnitude of the restoring force is directly
proportional to the spring’s deformation) as a sufficient condition of spring's
Harmonic motion.
The  argumentation  of  this  thematic  unit  was  as  follows:  The  text  starts  with  an
empirical, systematic description MoR where Picture (4.3.a) playing a fundamental
role. Then an initial claim, nomological MoR was referring to Hook’s Law. The VR
(linear graph) played a fundamental role in this MoR as well. The text concludes its
argumentation with a Logical-empirical, specific-general mode of reasoning since it
requires for the reader to connect the two VRs that interpret visually the Nomological,
main claim mode of reasoning (definition of SHO).

Our research question was: “How do students understand the argumentation
developed in the text?” “How do students explain conventions on the VRs (e.g. the
negative values of F)?”The questions addressed to the students were “(a) what does
the author want to show to his readers? How would you explain the existence of
negative values of F as shown in Picture 4.5(b)?”The students in
order to respond in the questions they had to understand the
argumentation developed in the text and interpret appropriately
connections between the MsoR and VRs and their conventions as
well.
Task 2

In the second task students are required to connect different
graphical representations of the same periodical phenomenon
(springs’ motion). The question was as follows: “The two graphs in Photos 1 and 2
refer to the same phenomenon. What relationships are depicted in each one of the two
graphs? What are their differences? Analyze and justify your answer”.
The linear relation F-x and the sinusoidal curve are depicted different aspects of the
spring’s periodic motion.

FINDINGS
Task 1: 67 out of the 70 participants responded in Task 1. From the 67 participants
only 35% (N = 24) enriched the textual information or used other arguments than the
one  mentioned  in  the  text.  The  rest  mostly  copied  the  MoR presented  in  the  text  or
made false interpretations of the modes of reasoning find in the text (e.g. imagine that
there is someone who applies a force on the spring all the time). Text enrichment or
make a clear and correct explanation of the argumentation developed in the text is
considered as an important parameter of content knowledge awareness (see results on
Activity 3). These students interpreted appropriately the mathematical signs according
to  the  physical  Law  (Hook’s  Law)  and  clearly  acknowledged  the  important  role  of
VRs in this thematic unit.

A typical response is: “The author’s aim is to introduce the students to simple
harmonic oscillations by showing them [he  does  not  use  the  term  ‘prove’,  so  he

Photo 2
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realizing the informal role of the Logical-empirical argument!] that the restoring
Force applied on the spring is proportional to springs’ displacement as Hook’s Law
defines. The author tries to convince the readers with the use of the representations,
these help the students to understand better …  Due to the restoring force the spring
moves from the position –xo to  +xo and continues this motion periodically” (st49,
elec).

St. 49 made a clear explanation of the role of the Logical-empirical mode of reasoning
in the text argumentation, and realized the fundamental role of the two VRs in this
MoR. Moreover, she visualizes the periodical motion of the spring from -xo to +xo all
the time which has a result on the periodical variation of F(x) as Figure II. 1 shows.

Fig. II.1: St 49’s dynamic image of the periodical variation

Only 6 students or 9% of the participants who responded in this task made a
convincing argument (a sufficient explanation) for the existence of negative values for
the Force F on the graph. In this case, students managed to connect their
(mathematical) knowledge on vectors with their scientific knowledge on Hook’s Law.
One explanation was as follows “F = - Kx, hence the force was proportional to the
displacement x but their signs are opposite, when the force is positive the
displacement is negative and the other way around” (st_30 elec). We classify this
reasoning as nomological since the student applies the formal definition of Hook’s
Law. Another type of sufficient explanation was as follows: “the displacement takes
negative values when it is compressed and positive values when it is elongated. The
force acts against the above spring’s displacement since it always tends to bring the
spring into its physical position (equilibrium position). When the spring is
compressed (negative x) acts in the positive direction in order to bring the spring in
the equilibrium position and the opposite (st11_str)”. We classify this reasoning as
Logical-empirical, specific-general, while the fundamental role of the VR is
acknowledged by the participant. In this case he manages to connect functionally the
scientific situation with his empirical observations.

Some students made a partial explanation by arguing that this is the reason that we
call the force “restoring”, works against the springs’ deformation or refer to the
“opposite vectors direction”. Finally, some of irrelevant responses were: “as many
times the spring oscillates the more negative values the force takes st48 elec” “Force
is a vector so instead of the value we take into consideration and the direction of the
force (st 19 mech.)”, the negative values are because the Force is decreasing (st 20
mech.)”, or “the negative values are due to the frictions”(st._65 Elect).
Task 2: This task was requiring students to make connections among representations
of the same periodic phenomenon. The analysis of students’ responses in Act 2/Task 2
(identifying  that  the  Hook’s  law  display  the  linear  relation  of  the  x-F  while  the
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sinusoidal curve display the relation x-t and both representations are referring to
different aspects of the same phenomenon) provided the following information.

Only 37 of the 70 participants replied in this task.
From those who participated, the majority interpreted the different graphs due to the
different spatial arrangement of the spring-in horizontal and vertical position. They
made naive generalizations based on some empirical observations. Only some of them
managed to connect the graphical representations as representing different aspects
(mathematical relations) of the same phenomenon (N=13 of the 70 participants). The
last outcome addresses students’ compartmentalization in knowledge. Below we
present an example of a student who realized the different graphical representations as
representing different aspects (mathematical relations) of the same phenomenon:

“Photo 1 [represents the relation] (F, displacement) & Photo 2
[represents the relation] (displacement, time) or in Photo 1 we have F
= -Dx while in Fig. 2 we have F=-Fmaxsin(ωt+φ)” (st 17_mech).

St17 identifies that the linear relation of the x-F and the sinusoidal curve
(relation x-t) both are referring to different aspects of the same phenomenon.

All the students who made a sufficient explanation in the second question of Task 1
responded successfully in Task 2. This is an indication that students there are potential
links between deep content knowledge and sufficient justifications.

Table II.2: Percentages of students’ responses in the category of the ‘connection different VRs

Categories
Connect the different graphical representations of

the same phenomenon
(N=37 responded in the question)

Not make any connections 45.9% (N=17)
Interpret one of the two successfully 18.9% (N=7)
Connecting both as graphical representations of
the same phenomenon that are depicted different
mathematical relations

35.1% (N=13)

Activity 2: Justifying periodical and non-periodical graphical behaviours
(context: mathematics)

METHODOLOGY

This study aims to explore how undergraduate students in mathematics and
engineering professions make sense out of graphs representing periodic and repeated
but non-periodic motions. In this study, making sense out of graphs means
interpreting graphical features and describing a situation that could be represented by
them. The data was collected by means of a questionnaire with open-ended questions
administered to 132 participants (undergraduate students).
The participants from two different University Departments (Mathematics and
Bioinformatics) and two different Technological Institutions Departments
(Electronics and Informatics). 19 students were studying Mathematics, 70 were
studying Informatics (39 Bioinformatics and 31 Informatics) and 43 were studying
Electronics.
Table II.3: The graphs in the initial report*

Graph 1 (Buendia &
Cordero, 2005)

Graph 2 (Buendia &
Cordero, 2005)

Graph 3 (Greek
mathematics textbook)

Graph 4 (Greek physics
textbook)
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*In the current report we restrict our analysis on graphs 1 & 4.

The questionnaire was completed in one teaching hour during a mathematics course in
the case of the engineering students and during a course in mathematics education in
the case of students in mathematics. Four graphs were given to the students that all
represent displacement in meters versus time in seconds. Table II.3 shows the four
graphs and the resources used.
Graph 1 represents non-continuous periodic motion while Graph 4 represents non-
periodic motion. Two tasks ere given to the students referring to each graph
separately. Task 1: Does this graph represent a periodic motion? (Identify
periodical behaviour). Justify your answer (justification). In this task, students are
asked to focus on how the repetition is accomplished in order to distinguish the
periodic from the non-periodic motions, as well as justifying their response. Task 2:
Provide an example that could be described by this particular graph
(exemplification).  In  this  task  the  students  were  asked  to  assign  to  each  graph  a
motion that could be represented by it.

In the current report we restrict our analysis on graphs 1 & 4.

FINDINGS
Students’ participation in the three tasks
Since students participated voluntarily in this activity we consider that the same
students' high or low participation in specific tasks over other tasks signifies students’
readiness to be involved with them.

We identified low participation of students in the task on justifying which graph
represents periodic or non-periodic motion and high participation in the task of
providing an example that could be described by this particular graph. This fact is
surprising since the ‘exemplification task’ is considered to be more time-consuming
and effort-required than the ‘justification task’ one. Even though not all examples
provided by the students were appropriately describe the graph we cannot ignore the
fact that students prefer to develop logical- empirical justifications by connecting a
mathematical (logical) model to their personal experiences of periodical behaviours
than developing formal justifications (that mostly require the use of nomological
syllogisms).

Table II. 4: Students participation in tasks
Graph 1 Graph 4Tasks N=132 N=132

Identifying periodical behaviour. 113 114
Justification of response. 58 64
Exemplification 84 102

Hence, difference in students’ participation in tasks could provide us with information
concerning students' preference to work in tasks requiring visualization and
imagination than reasoning and abstracting, and using their own experiences that
justifying at an abstract level.

Identifying periodical behaviour (Does this graph represent a periodic motion?)
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Two  categories  emerged  from  the  analysis  of  this  task:  the  graph  represents  a non-
periodic motion; and the graph represents a periodic motion. Almost three out of four
students identified periodicity in Graph 1. Graph 4, which represents a repeated but a
non-periodic motion, seemed to confuse students a lot since almost seven out of ten
considered it to be a periodic graph. We can explain this students’ misunderstanding
since in physics texts the above graph describes a decreasing oscillation which under
some restrictions is considered to be a periodic motion.

Table II. 5: Identifying periodical behaviour

Graph 1 Graph 4Categories
113 Participants 114 Participants

Non-
Periodic

23.89 32.46

Periodic 76.11 67.55
Students’ Reponses on the justification task

When we analyzed students’ justifications the following categories emerged: naive
justifications; Logical-empirical, general-specific & specific-general, and
nomological. We have to notice that we analyze true or false justifications.
Naïve justifications that are based on naive beliefs about the periodic notion. An
example of naive justifications for the case of Graph 1“It is not periodic because
there is not any harmony in the graph” (st59_elec). It is interesting that the periodic
graph (Graph 1) cause students more naive justifications than the non-periodic one.
Some characteristic examples of Logical-empirical, general (the graph)-specific (a
concrete example) students’ justifications are: (Graph 1) “the body of the graph
diverges from the starting point of motion and then always returns within 4 seconds,
therefore the graph is periodic (st99_elec); and (Graph 4) “it is periodic because it
represents the motion of the swing” (st129_inf). This indicates students’ need to set up
a background for their justifications.
Logical –empirical, general -specific is the case that the students generalize by
pointing on specific observations on variations on the graphical representations
“Graph 4: It is periodic but we can see that as the time passes it dwindles and we are
led to a standstill” (st101_elec); or “It is a periodic motion that decreases (its
amplitude diminishes) all the time” (st68_elec); ”. Although st101 expresses a doubt
he/she still names the motion 'periodic'. In st68 response the decreasing amplitude
'fits' with periodicity. Some students used continuity issues as a warrant to take the
stance that Graphs 1 is non-periodic. For example, st19_math notices: “Ι do not know
if this graph preserves a periodic behaviour because in its second position it has
different values from left and right”.
Finally,  we  consider  as mixed justifications when  we  could  identify  elements  of
nomo-logical (constant period, f(x+T) = f(x), decreased harmonic oscillation, etc.)
and Logical-empirical MsoR (identify elements on graphical representations) in
participants’ responses. An example is: “(Graph 4) it is periodic since it is a
decreased harmonic oscillation with a constant period” (st76_elec.). Most
participants used parts of definitions of periodic motions taken from their physics
texts while only one (!) used the formal definition of periodic functions taken from
their math texts. Particular, st6_math reasons on what is periodic by using the
‘definition of periodic functions’ in the case of Graph 1. To our surprise, in the case of
Graph 4, the same student changes her argument as follows: “It is periodic since any
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sinusoidal function is periodic” since she thinks that the particular graph represents “a
sinusoidal function”. Many students used this argument in order to justify that Graph
4 represents a periodic graph. We consider this argument as a mixed justification.
Table II. 6 present percentages of students’ type of justifications. We notice the
privilege role of the Logical-empirical, from general to specific in both Graphs but
mostly in the case of Graph 4 (four out of ten participants used an example in order to
justify their response. A common example was the playground swing which was
introduced as an example of periodic motion in their physics and mathematics
textbooks. The case of the periodic graph causes a lot of naïve justifications in
relation to the non-periodic graph.

Table II. 6: Students’ justifications
Graph 1 Graph 4

Categories N=58
(%)

N=64
(%)

Naïve justifications 17.24 6.25
Log.-Emp, from general to specific 25.86 39.06
Log-Emp, from specific to general 22.41 31.25
Mixed (Nomological & Log. empirical,
specific-general) 34.48 23.44

Finally, in the case of Graph 1 many students tried to synthesize definitions of
periodic motions (nomological) and observations on the graphical representations and
this helped them to provide a correct answer. The same type of justification does not
help them to realize gaps in their reasoning. The influence of the reasoning developed
in their physics class was dominated their understanding.
Students’ responses on the exemplification task

Graph 1
Creating a motion example of a piece-wise continuous function is very difficult but a
few students managed to provide examples that could satisfy all the graphical features
in this graph. Particularly, only 7 participants provided examples that are satisfying
the graphical conventions on Graph 1. A typical example of enriched repeated
motions in  the  case  of  Graph  1:  “ascending and descending jumps between uneven
steps (st1_math)”.  In  this  case,  all  participants  used  their  kinesthetic  experiences  of
‘jumping’ or ‘climbing stairs’ in order to respond successfully in this task.

Graph 4
Many students used the swing example for responding in the case of Graph 4. This
example was a typical example in their physics classes.
Physical tools’ motions provided the context used by most students to translate the
graphs to situations. Bodily actions were used by 25% of participants in Graph 1 and
only 8% of participants in Graph 4. We interpret this result that most students
consider that human actions are very difficult to model Graph 4 motion graph so they
have changed the context of their example from bodily actions to physical tools’
motions  or  vibrations  of  natural  tools.  More  than  one  out  of  four  students  used
examples of vibrating natural objects (e.g. sea waves) in describing the case of Graph
4. The graphical image resemblance with travelling sinusoidal waves was the reason
to use them as the context of their examples.
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Activity 3: Relating prospective teachers’ explanations with their level of content
awareness (engineering context)

METHODOLOGY
The participants were 86 undergraduate mechanical engineering students. The
students were mostly in the 6th semester of their studies. The data are from their final
exam on a Didactics course. During this course the students are introduced to teaching
techniques, designing interventions and developing learning activities. They also
obtain experiences in analyzing school textbooks and handling text and images for the
enhancement of their students’ learning. The extract given to the participants before
their  final  exam  was  taken  from  the  textbook  “Car  systems”.  The  topic  referred  to
“Helical springs as parts of the car suspension system”. A part of the textbook extract
given to them is presented in Fig. II.2.

The extract includes both text and visual representations. The following task was part
of the participants’ teaching plan:

Describe in an analytical way how you will explain to your students the significance
of the different characteristics of helical springs (linear and progressive) in
controlling cars’ vibrations”.

Although the whole textbook extract explains the scientific part adequately (e.g.,
Hook’s Law and linear relations), the connections with the applied context (car
suspension) is absent. However, all the participants had taken the course on “Motor
technology”  that  included  topics  on  the  car  suspension  system.  Therefore,  the
participants should connect the textual information with information taken from other
resources (previous courses or internet), objectify the relation between the scientific
and the applied context and communicate this relation effectively to their students.

Title: Cars’ suspension system; Subtitle: Helical springs
Main text: Presents Hooks’ Law and explains the visual
representations as follows: In  Fig.  4.27a  we  see  two
springs with different stiffness (different constant c). The
spring with c=25000N/m [is named on the graph as stiff] is
considered as more stiff than the other with c=7500N/m [is
named on the graph as floppy]. In the common springs, the
characteristic is a straight line and is called ‘linear
characteristic’. If the spring stiffness increases not linearly
in respect to the change of the springs’ deformation (Fig.
4.27b) then we have a progressive characteristic curve".

Fig.4.27: Characteristic lines of helical springs: (a) Linear;
(b) Progressive

Fig. II.2: A part of the textbook extract

(Andrinos, Ν. Panagiotidis, P. & Papadopoulos Ν. 2009. Car Systems I, Athens: OEDB, p. 235).

The data analysis of all participant-produced texts helped us to place them on
different levels of awareness and attention on transforming the school text into an
explanatory unit.

FINDINGS
A careful study of our data led us to discern three different levels of awareness and
attention in terms of the functional relation between the scientific and the applied
context. The first level of awareness is expressed by participants who only presented
their lesson plan without any sign of developing a deeper understanding of the text
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and the teaching goals. This level is called superficial explanatory level of awareness
since it corresponds to a limited pedagogical content knowledge. Conceptual elements
were mostly absent, i.e. participants did not consider how their explanations could
facilitate their pupils’ learning of scientific notions. The second level of awareness
was expressed by participants who were able to enrich the textual material by
interpreting features of the scientific context (e.g., reason on the different
characteristics of the springs) or the applied context (e.g., reason on choosing the one
or the other type of springs on the car suspension system). These participants,
however, did not manage to create a new context where the scientific and the
technical aspects are related in a functional way. The second level of awareness can
be characterized as partial explanatory. It corresponds to a more developed degree of
pedagogical content knowledge than the superficial explanatory but their responses
were restricted either to the applied or the scientific context. In the third level of
awareness, participants’ explanations managed to create a new learning object where
elements from the scientific and the applied context co-exist. Participants were able to
recognize and interpret symbolic entities (e.g., Hook’s Law) according to the needs of
the specific situation to which they referred. Participants also appeared to be aware of
their  teaching  goals  and  the  subsequent  actions  to  be  taken  into  account  in  their
transformations. This third level is characterized as substantial explanatory level of
awareness. Examples of the three levels of participants’ awareness are presented
below.  The  qualitative  analysis  of  each  example  follows  and  the  results  of  the
quantitative analysis are also discussed.

The following is an example of text falling into the superficial explanatory level of
awareness:

“I  could  bring  in  the  class  two  springs,  a  stiff  and  a  floppy.  In  this  case,  they  will  have  the
chance to observe the consequences of the oscillation in the different springs. In this way, I
could relate them to the car suspension and how they (the springs) are interrelated to the car
movement” (st78).

Table II.7: Analysis of st78’s response (superficial explanatory)
The role of school text Does not use it as a tool
Participants’ text Narrative

Math AbsentScientific
elements Physics Use of scientific terminology
Applied/technical Present
Aspects of periodicity Implicit

In  st78’s  response,  there  is  not  a  clear  goal  of  how  he/she  intends  to  explain  the
conceptual connection of experimental demonstration to car suspension and
movement. Participant’s attention is on an experimental activity and not on explaining
how this is connected to the understanding of the real technical situation. The
conceptual and pedagogical concerns seem to be superficial.

An  example  of  text  falling  in  the partial explanatory level of awareness is the
following:

“The two springs have a different structure, since one is cylindrical and the other conical. In the
diagram (a), the spring displays a linear characteristic since it always has the same stiffness
(constant  c)  in  relation  to  the  spring  in  the  diagram  (b)  where  as  the  length  of  the  spring
increases, its width decreases, so in the different width it has different stiffness, so the diagram
is a curve” (st85).

St85 seems to be familiar with the scientific sign conventions, but not able to relate
them to the referential situation (car suspension). St85’s descriptions show lack of
ability in relating the two contexts, the scientific and the applied.
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Table II.7: Analysis of st85s’ response (partial explanatory)
The role of school text Enriched
Participants’ text Argumentative

Math Interprets sign conventionsScientific
elements Physics Entities
Applied/technical Absent
Aspects of periodicity Implicitly

We found that 42.79% of the participants fall in this level of awareness (N=29). In the
case of the role of school text, it was mostly copied or mimicked (N=17). In the case
of participants’ text, it was mostly argumentative (N=13). At this level of awareness,
the participants used arguments taken mostly from the textual material and valued the
scientific elements. However, they did not acknowledge the importance of the specific
situation.
An example of text falling in the substantial explanatory level of awareness is the
following:

“If we want slow response on the absorbance of car’ vibrations and consequently on car road
holding, we choose the cylindrical spring. The reason for this choice is that its deformation (l) is
related linearly to the load (Force F) imposed on it. We will not have the same effect if we
choose a conical spring with a progressive characteristic since the relation between the
deformation (l) and the force (F) which is imposed on it is not linear. For small loads, we will
have immediate response, but for larger forces we will not have the analogous deformation and
the forces will be transferred to the passengers’ cabin” (st36).

Table II.8: Analysis of st36’s response (substantial explanatory)
The role of school text Enriched
Participants’ text Argumentative

Math Interprets sign conventionsScientific
elements Physics Connect physical entities & Laws
Applied/technical Present
Aspects of periodicity Implicit

St36 starts by making an argument, namely that cylindrical springs have slow
response  on  car  vibrations.  Moreover,  St36  relates  the  car  vibrations  to  the  holding
capacity  of  the  car  and  uses  the  linear  relation  as  warrant  for  slow  car  response  on
vibrations. St36 interprets symbolic mathematical relations and connects the physical
entities with the physical laws. It appears that st36 uses a developed structure of
attention and is able to produce a substantial explanation for his/her own students. The
participants that belonged to this level of awareness were N=13 or 19.1%. They all
enriched the textual information and used arguments in their responses.

CONCLUDING REMARKS on PART IIa
The analysis of undergraduate students’ responses on the three research activities used

raised four main issues. The first issue is related to
students’ misconceptions on the periodical or non-
periodical behaviour of a graphical representation the
function f(x)=e-bxsin(ωx). The second issue raises two
opposed students’ cognitive attitudes i.e. they skip
justifications on their claims while they join in
visualization practices. The third issue concerns the
existed difficulty that students face in integrating
mathematical and physics knowledge in order to provide
complete explanations in terms of topics of periodicity.

Finally, positive links between robust understanding of aspects of periodicity and the
production of sufficient explanations have been identified.

Fig.  II.  3: A typical
textbook image of a
degreasing oscillation.
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The vast majority of students easily identified the periodical property in periodic non-
sinusoidal graphs. It is interesting though that a Graph, which exhibits a fluctuation
(looks like the sinusoidal curve but with decreasing amplitude) (see Fig. II.3) seemed
to confuse students a lot, since seven out of ten considered that it represents a periodic
motion. Students’ overgeneralizations, such as any repeated function is periodical, is
also highlighted in Buendia and Cordero study (2005). This students’
misunderstanding can be explained since in physics texts functions, such as f(x)=e-

bxsin(ωx), are considered as functions that model ‘periodic motions’ under certain
conditions. Besides, the existence of the sinusoidal function (a typical example of
periodical function in mathematics and physics) adds to students’ misconceptions. We
have to mention that sinusoidal graphs are the main graphical models of the behaviour
of periodic motions in school textbooks (see conclusions on PART I), but still are
causing students false impressions.
Argumentation and reasoning seems to be a non-familiar practice for undergraduate
students. The students’ low participation in relative tasks, where justification was
necessary, supports our claim. In the case of participating in this type of practice
mostly logical-empirical type of justifications were identified in their responses.
Participants rarely used formal definitions as warrants in their responses. Even
mathematics undergraduate students avoid using the formal mathematical definition
for periodic functions. One reason for students’ reluctance to argue on their claims
could be either because argumentative-pedagogy is not a common practice in the
Greek educational system or because certain conceptual elements are not consciously
comprehensible by them.
Our findings provide evidence on students’ strong willingness to assign meaning to
abstract mathematical entities. This outcome was proved both by their high
participation in the ‘exemplifications task’ and by the fact that they use these
examples as warrants for their justifications (we name this justification as Logical-
empirical, general-specific reasoning practice) (Act.2). In this case, the role of
students’ kinesthetic experiences has been proved central both when they provided
enriched examples of motions represented by the particular graphs and when they take
the stance to change the context of the examples according to their perception of the
graphical features represented. These findings show the embodied nature of thinking
and the genetic relationship between the sensual and the conceptual in knowledge
formation (Nunez, 2007; Radford, Cerulli, Demers, & Guzmán, 2004). We add more
to this conception by highlighting the role of visualization in reasoning. Visualization
seems to be an important skill in order to identify the periodical behaviour when
making sense out of VRs. But this skill is not enough in order to overcome ‘reasoning
gaps’ in texts. In this case, the readers need to argue by synthesizing all the logical
acts (from sensual to abstract) in order to overcome diversities and reasoning gaps.
This means that fragmented knowledge consisted only of nomological modes of
reasoning (i.e., definitions, Laws etc.) or only empirical or logical-empirical modes of
reasoning are not adequate in order to develop a sufficient argument on complicated
tasks (e.g., in Act. 1 when students were asked to explain the negative values of F in
Fig. II.4).
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Fig. II.4: The variation of restoring Force in Simple harmonic oscillations.

An important demand of the task for undergraduate students was to integrate their
mathematical and their physics knowledge in order to provide sufficient explanations
concerning texts on periodicity (Act 1 & Act. 3). Three dimensions capture how
undergraduate engineering students (future teachers) transformed a text on car
suspension into an explanatory teaching unit: the role of the school text; the type of
text produced by the participants; and the conceptual elements identified in
participants’ texts. The last dimension provided evidence to discern three levels of
participants’ awareness of the functional relation between the scientific and the
applied context: the superficial, the partial and the substantial explanatory.
Qualitatively speaking, explanations became more sophisticated when participants fall
in a higher level of awareness.. Particularly, at the second and the third level of
awareness, participants employed and enriched the information in the textbook
extract, while their text became less narrative or expository and more argumentative.
Moreover, in the substantial explanatory level participants were able to express
connections between different fields of knowledge in an argumentative way.

The complexity of integrating contextual and scientific salient elements when
transforming a scientific text is apparent in this study, since only a small number of
participants managed to reach the substantial explanatory level of awareness. Finally,
issues on the value of explanations in teaching have been acknowledged (Perkins &
Grotzer, 2005) and their relationship to conceptual aspects remains an issue worthy of
further research (Braaten & Windschitl, 2011).

PART IIb
Teachers’ pedagogical tools when teaching periodicity

METHODOLOGY
The participants
A total of 50 teachers participated in this research phase. 42 and 13 participated in
research activities 1 and 2 respectively, while 5 of them participated in both activities.
Table II.9: Participants in PART IIb.
Research activity Engineering Mathematics Physics TOTAL

1 5 19 18 42
2 3 5 5 13

TOTAL 8 24 23 55
The data analysis was based on the grounded theory research perspective (Corbin &
Strauss, 2007). In particular, we are looking for categories and patterns emerging
from  the  analysis  of  the  raw  data.  More  specifically, inductive content analysis
(Mayring, 2000) was applied and a coding system of categories has been produced. In
some cases our analytical  framework on MsoR (Triantafillou,  Spiliotoulou & Potari,
2015) provide us a set of filters through which to systematically examine teachers’



49

justifications (Act.1) and if and how they modify the argumentation developed
specific thematic units on periodicity (Act.2).

We have to mention teachers’ reluctance to participate in this study and answer in all
the tasks.

Activity 1: “Teachers’ justifications and fundamental images on periodicity”
(questionnaires)
A questionnaire with open-end questions was either distributed as hard copy to some
educators in 13 schools in three Greek cities, or sent electronically to others. In this
activity our focus was on images of the notion that we met in school texts and on
teachers’ justifications when they had to eliminate certain students’ misconceptions
about the notion.

Task 1
We ask the educators to refer to the basic teaching units they teach that contain
aspects of the notion of periodicity, choose one teaching unit of the above and make a
list of the fundamental visual representations (VRs) of the notion that they meet in the
school textbook in the specific teaching unit.

Task 2
In this task, we question the actual or potential use of five VRs selected from five
different  school  texts.  We  also  asked  them  to  indicate  their  teaching  goals  (in  the
cases of actual and/or potential use of specific VRs).
Table II.10: The five images of periodicity (VRs)

VR1 VR2 VR3 VR4
VR5

Task 3
We use results taken from PART 1a. In the following task, we asked the participants
to describe in brief how they could handle two characteristic students' responses (in
cases when these came up in their classes).

Students’ Task
Graph 4 (PART 1a, Act. 2) Questions

Does this graph represent a periodic motion? Justify
your answer.

Students' responses
R1: «It is periodic because it represents the motion of the swing» (we refer as R1-swing)

R2: «It is periodic because every sinusoidal function is periodic» (we refer as R2-sinx)

Teachers’ task: Describe in brief how you could handle the above students' responses
in cases these came up in your class.
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Graph 4 was a graph that caused a lot of misconceptions to students. We chose the
above students' responses because they all refer to the sinusoidal function either
explicitly  (R2)  or  implicitly  (R1).  Moreover,  the  motion  of  playground  swing  is  a
typical example of periodic motion in mathematics and physics (see findings on task1
in  this  activity).  Besides,  theses  responses  were  typical  and  seemed  to  predominate
students’ conception that a function that fluctuates about the x-axis with decreasing
amplitude  (i.e.  e-xsinx) is periodic and is represented by the sinusoidal function.
Teachers are asked to make an argument in order to eliminate students’
misconceptions.

FINDINGS

Task 1
The basic thematic units and fundamental visual tools teachers referred are presented
in Table II.11
Table II.11: The fundamental images of periodicity in school texts*
Educators’ subject Teaching unit Fundamental visual representations in school

texts
Engineering alternate

currents
generator of alternate current and the
corresponding sinusoidal function, photo of
moto-electrical devices

Mathematics trigonometry sinusoidal graphs, other graphs of trigonometric
functions, the trigonometric circle, drawing of
playground swing

Physics Harmonic
oscillations

Sinusoidal graphs, graphs of linear relations, the
photo of the pendulum clock, photo or drawings
of the playground swing, schematic
representations of experiments with springs and
simple pendulums

*Some of the educators added the use of digital technology (videos, animations or
simulations).

According to our data, the most fundamental images of the notion in school texts are:

(a) The sinusoidal curve which  seems  to  dominate  educators'  practices  in  all
subjects. The educators use this curve in different contexts and for various
purposes (i.e. in the symbolic form of I = Iosin(ωt) to study alternate currents
in engineering courses, in the symbolic form of y = sinx to study trigonometric
functions in mathematics and in the symbolic form of y = Asin(ωt)) to study
simple harmonic oscillations in physics.

(b) The pendulum swing. This image appears in different genres and in different
contexts and seems to be a common image of the notion in mathematics and
physics texts. Particularly, the swing of the pendulum image appears as a
photo of a pendulum clock in physics or as a drawing of a playground swing
in  physics  and  mathematics  or  as  a  schematic  representation  of  a  simple
pendulum swing (a pendulum swing consists of a relatively massive object
hung by a string from a fixed support) in physics.

(c) The trigonometric circle is a fundamental image of the notion in mathematics.

Many educators from all subjects consider that the role of a visual representation in a
text could be either to attract students' attention or to visualize the real situation.
Educators in engineering courses consider as important synthetic images consisting of
different types of VRs that represent periodical variations. As an example, we provide
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the following image that is considered as important by Q25_eng participant. This
image is a synthesis of a graph (the sinusoidal curve), a drawing (generator of an
alternate current) and two photos (the alternator). This synthetic image role in an
engineering  text  (Car  electrical  system)  is  to  explain  the  operation  of  this  moto-
electrical device (in this case, the alternator). This image incorporates elements of
mathematics, physics and technology.

Fig. II.5: The VRs’ mentioned by an engineering educator.

This indicates that engineering is a complicated context where interpreting images
with different levels of generality is considered to be a fundamental skill.

Task 2
The most preferable VR by all educators was VR3 (the synthesis of the drawing of a
playground swing and the periodic graph). The second most preferable VR by all
educators was VR2, in the third place we meet VR4. The respondents put VR1 in
fourth place and VR5 last. We note that teachers could use more than one VR.
Table II. 12: The five images of periodicity (VRs) and teachers’ hierarchical preference of the

five VRs. (Total No of participants in this Task 38)

VR1 VR2 VR3 VR4 VR5
50% (N= 19) 71.05% (N= 27) 84% (N= 32) 60.52% (N=

23)
23.68% (N= 9)

The results indicate that the image of a playground swing and a periodic graph is the
most preferable VR (84%). This result adds that the ‘pendulum swing’ is a
prototypical image of periodicity. Some math educators admitted, though, that their
reference to this image is very brief due to time restrictions. Some physics educators
suggested changing parts of this image for potential use in their class. The suggested
changes by two participants were to put the starting point of the motion at (0,0) while
another three acknowledged that the period of the motion is different in physics, and
this must be mentioned to students. This critical perception of an image indicates that
educators many times are able to change something given in their text in order to use
it as a tool in their teaching practice.
The second most preferable image was VR2 that represents the clockwise circular
motion of α vector representing the alternate current a(t) = Ao sin(ωt+φ) (71.05%).
The angular velocity of the above motion is ω. The starting point of the motion (t=0)
was (Aosin(φo)). Next to this motion is its graphical representation. This image layer
of generality is considered abstract, as no physical situation is represented while a
variety of mathematical objects are present (the trigonometric circle, the vector
representations of the alternate current), the sinusoidal graph as the basic model of
periodic variation and many symbolic entities (a=Aosin(ωt+φ)). This image’s
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potential use seems to dominate physics and engineering teachers’ practices, while
only a few math educators mentioned its potential use in their class. The issue that this
image reasons visually on the generation of the sinusoidal function, but in the context
of alternate current, seems to be restricted by most of the math educators (maybe they
were not familiar with many symbolic entities in this VR).
In the third place we find VR4 (60.52%). It is an elaborated photo
(chronophotography) and its layer of generality is concrete. VR4 represents
consecutive instances of the oscillating sphere attached on an ideal spring. In the
fourth place we find VR1 (50%) that represents the motion of the cardiovascular
muscle.
It  seems  that  the  level  of  generality  is  not  always  teachers’  criterion  for  using  an
image in their teaching practice but the content and the context of the image.
Particularly, their preference seems to depend on (a) how central they consider it in
their teaching and (b) how they could handle it in the class. It is interesting that many
mathematics educators suggested using VR4 (an elaborated photo image) in their
class although in Greek mathematics texts the presence of photos is almost rare. Also,
it is interesting that although in physics texts the only periodic graph is the sinusoidal
curve they value other types of curves that exhibit a periodic behaviour not present in
their text as important in their teaching as well.

The teaching goals mentioned by mathematics and physics educators are presented in
Fig. II.6. Mathematics
and physics educators
appear to have almost the
same teaching goals when
using the above VRs.
Particularly, modelling is
considered by them as
their prior teaching goal
(either by studying the
mathematical model or by
relating the phenomena to

their mathematical models). Moreover, ‘making connections to every day
phenomena’ is valued high even for mathematics teachers and this result indicates that
teachers’ need to find images that could help them to make connections to every day
life. If we examine the teaching goal for each VR separately, we see that each
educator have different learning objectives even in the same subject. Since different
learning objectives could produce different teaching practices, we conclude that the
use  of  the  same  image  in  school  practice  does  not  necessarily  presuppose  the  same
activity.

Task 3
In this task we asked the educators to describe in brief how they could handle two
characteristic students' justifications (R1-swing & R2-sinx).
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Fig. II.6: Mathematics and physics educators’ teaching goals.
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Students’ Task
Graph 4 (PART 1a, Act. 2) Questions

Does this graph represent a periodic motion? Justify
your answer.

Students' responses
R1: «It is periodic because it represents the motion of the swing» (we refer as R1-swing)

R2: «It is periodic because every sinusoidal function is periodic» (we refer as R2-sinx)
Teachers’ task: Describe in brief how you could handle the above students'
responses in cases these came up in your class.

We identified the following categories in teachers’ responses:
Teachers suggest that they would ask students to …

… compare this particular example (e.g., the playground swing) with other examples
that exhibit a periodical behaviour. Some characteristic responses are: ‘I could
provide the example of the pendulum clock and I could ask them to compare the two
motions. (Q18_eng); “I would ask students to compare the every day examples with
their models that we use in our classrooms” (Q15_phys.). These responses were
mostly met in the case of R1-swing.

… focus on the graph (mathematical model) and relate it with other mathematical
models: Some characteristic answers are: ‘In the case of the swing we have frictions,
so as the time goes on, the maximum and the minimum of the graph changes, as  a
result it is not a periodic motion.’ (Q2_math); ‘I would discuss with the students the
relation of the phenomenon as it happens in nature with their mathematical models
(Q15_physics); ‘I would present the sinusoidal curve and I would discuss with my
students the similarities and the differences with the two curves (Q8_ math).

In the above categories teachers create a context and ask the students reflect on it (the
context could have either a physical or a mathematical situation). We could consider
the above categories as Logical-empirical MsoR. The definition of periodic motions
(or functions) is implicit in teachers’ responses.

… use definitions (either by applying the definition or by referring to taxonomies of
periodic motions). “I would ask them to apply the definition” (Q5_math). In these
responses the context is absent. We could name these as context-free responses.
Finally, no justification is the case that teachers are judging students’ responses as
correct or incorrect with no further comments e.g., “we can not define the notion
periodicity through an example” (Q7_math); The answer is not right because f(x+T)
¹  f(x)(Q6_math).
In  the  following  table  we  present  the  results  of  our  quantitative  analysis  for  all
participants. It seems that the context of students’ justification affected teachers’
responses. In the case of (R1-swing) teachers preferred to ask students to compare
concrete examples of periodic with examples that exhibit periodical behaviour
(38.5%). In the case of R2 (sinx) most teachers (56.5%) preferred to ask students to
focus on properties on the mathematical model. It is interesting that the vast majority
of teachers set up a context and proposes logical-empirical modes of reasoning in
order to clarify students’ misunderstandings in both Rs (almost 70% for R1-swing &
almost 60 % for R2-sinx). It is surprising though that 15% to 17% of the teachers
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provide the answer with no justification. We do not know if this is a common practice
in their class or this was a way to avoid making an argument.

Table II.13: Results of quantitative analysis for all participants.

Categories
Asking students to …

R1 (swing)
N=26
(%)

R2 (sinx)
N=23
(%)

… compare this particular example (e.g., the playground swing) with
other examples that exhibit a periodical behaviour 38.5 4.34
… focus on the graph (mathematical model) and relate it other math.
models 30.76 56.52
… apply definitions 15.38 22
Provide the answer with no justification 15.38 17.4

In the following table we focus on mathematics and physics educators responses by
taking into consideration their responses in both tasks (R1-swing & R2-sinx).

Table II.14: Results of quantitative analysis in both R’s in the case of physics and
mathematics teachers

Categories
Asking students to …

Math.
N=24
(%)

Physics
N=21
(%)

… compare this particular example (e.g., the
playground swing) with other examples that
exhibit a periodical behaviour 16.66 28.6
… focus on the graph (mathematical model) and
relate it other math. models 41.66 38.10
… apply definitions 25 14.28
Provide the answer with no justification 16.66 19.05

Even though physics teachers prefer to use examples (set up a context in their
justification) while math teachers prefer to use definitions (context-free justifications)
we can speak about common reasoning behaviours between them.

Activity 2: “Teachers’ judgments when modifying textbook argumentation”
(interviews)
The  interview  theme  in  this  research  activity  was  based  on  the  role  of  the
argumentation developed in textbooks when topics on aspects of periodicity are
presented in teachers’ classroom practices.
We  focus  our  attention  on  different  topics  according  to  each  participant:  For
mathematics teachers the topics are: Define periodic functions & Study the sinusoidal
function (Mathematics, 2nd year in upper secondary school). For physics teachers:
Define periodic motions (Physics, 3rd year in lower secondary school) and Define
simple harmonic oscillation (Physics, 2nd year in upper secondary school). The
teachers in engineering courses choose the topic themselves.
We adopt the position that textbooks aim to introduce their readers to the conceptual
aspects of scientific and mathematical knowledge and persuade them of their value. In
this way we consider that a form of argumentation is developed in each thematic unit
and is produced by a sequence of modes of reasoning (MoR) that the author develops
in the text when organizing and presenting the new knowledge. We ask teachers if
they follow these MsoR or they modify them, how and why?
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Fig. II.8. The textbook Logical-
empirical MoR that Vaggelis (physics)
replaces with an Empirical one.

Teachers’ practices
in modifying
textbook
argumentation

Justifying
modification Cover reasoning gaps in

the school text.

Need to respond to
students’ queries.

Omitting a
MoR
Adding new
MsoR

Type of
modification

Replacing a type
of MoR with
another one.

Captivate students’
attentions

Value the MoR as not
didactically appropriate

Help students to visualize
concepts

Fig. II.7. The systemic network (Bliss et al., 1983)
on teachers’ justification on their text modifications.

[The school text] We notice that as x values
from 0 to π/2, point M moves from A to B.
Therefore, the y-coordinate increases, thus the
function sinx is strictly increasing in the interval
[0, π/2]. Similarly, we find that the function is
strictly  decreasing  in  the  interval  [π/2,  π].  [...]
Moreover, the function has a maximum value
on x=π/2 (sinx=1) and a minimum value on
x=3π/2 (sinx=-1).

Fig. II.9: Example of an omitting
textbook Logical- empirical MoR.

Some questions addressed to teachers were: In the school text the new knowledge is
developed in a certain way. Do you follow this when you teach one of the above
topics? Are there some parts on the development of the new knowledge that you pay
more attention to when you teach this topic? If yes, which ones exactly? Do you use in
your teaching practice the examples provided in the textbooks or other examples?
Can you specify? How do you connect the examples with the topic you teach? Please
justify your answer.
All the participants’ names appear below are pseudonyms.

FINDINGS
Most of the participants express
many concerns about the textbooks
e.g. "I think that the books say many
things but not purposely ... they tell a
story but nothing in particular"
(Andreas, eng.). As a result, most
participants in this activity mention
that they prefer to modify parts of the
knowledge organization provided in
each thematic unit.
Teachers’ practices in modifying
textbook argumentation emerged
from the data analysis in a form of a
systemic network (Fig. II.7). Two
main dimensions characterize

teachers’ practices: The type of modification (replacing or omitting or adding a MoR)
and their justification.

Their justifications in modifying textbook
reasoning were as follows (i) when valuing the
MoR as not didactically appropriate; (ii) when
responding to students’ queries; (iii) when
covering reasoning gaps in the school text;
(iv) help students to visualize concepts; and

(v) in
order

to

captivate their students’ attention.

We exemplify our analysis below:
In the following extract Vaggelis (physics)
replaces a logical - empirical MoR (see Fig.
II.8) to an empirical one because he values
that the context of textbook MoR is not
appropriate (the experiment is impossible to
be successful):
Vaggelis (physics): I never use this example

[…] (Fig. II.8) I think that this experiment is impossible to be successful.



56

Besides, my students can do this experiment by themselves; one student holds
a pen in his hand and moves his hand vertically in a constant way while his
colleague moves a paper before him with a constant speed. The pen sketches
the sinusoidal curve on the paper.

The case of omitting a MoR was mentioned by participants from all subjects.
For example, Niki (math) mentioned that usually she does not use the trigonometric
circle in order to study the sinusoidal function (Fig. II.9) and argues as follows:

Niki (math): students do not realize easily that the sinusoidal function has
period 2π. They ask me 'what is π?'. So, I start reminding them how we defined
'π' in geometry. So, after omitting the part with the trigonometric circle, I
could go straight to the value table that they know and I use that to sketch the
sinx graph.

In this case the math teacher omits a central MoR (defining the sinx function with the
help of the trigonometric circle) since she has to remind to his students a lot of
theoretical issues (e.g. define ‘π’). In this case Niki (math) omits a central Logical
empirical  MoR  and  adds  other  Nomological  ones  (e.g.,  defining  ‘π’)  in  order  to
respond to students queries. These MsoR are parts of previous thematic units.
On the other side, most physics teachers mention that they try to cover the reasoning
gaps in textbooks in the case of identifying the sinusoidal function in by using the
trigonometric circle. For example, Fani (Physics) mentions:

"when I teach the Simple harmonic oscillation I have to define the sinusoidal
function, for this reason I sketch the trigonometric circle and take certain
values, T, T/4. T/2 etc. ... this is the only way for the students to follow my
lesson".

In this case, an omitting MoR by a math teacher (Niki), due to other didactical issues
that came up in her class, is an adding MoR by a physics teacher (Fani) in order to
cover reasoning gaps in physics textbook.
In the following two extracts Nikos and Ntinos mention that they usually omit a
particular example when teaching the thematic unit 'Periodic motions', 3rd grade
lower secondary school (Fig. II.10).

Nikos (physics): “I never use the
electrocardiogram as an example of a
periodic motion, its is a very strange
example, since the conditions should be
perfect in order to have such a
diagram”.

Ntinos (physics): “I prefer not to use
the example with the
electrocardiogram since it is hard for
me to explain what parts of this graph
are represented”.
The  reason  for  this  change  in  the

knowledge organization developed in the textbook is because they valuing the MoR
as not didactically appropriate.

The school text: [...] The muscle of the heart performs a
periodic motion as well, as represented in the
electrocardiogram [photo 4.2]

Fig. II.10: An example of an omitted Logical-
empirical, general-specific MoR.
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Giannis (eng.) changes a sinusoidal image as follows when he teaches "Alternate
currents" to his students:

Fig. II.11: The textbook VR (appears as a Nomological MoR-definition of Altenate Cuurent- and the
way Giannis (eng.) changes it in order to make his students understand what “c/s or Hertz” means:

"We have the sinusoidal curve which shows [the values] 0 - max - 0 - min and I
tell them if this part of the curve [T/2-T] flip it under the first part it makes a
cycle ... that is why we refer to the cycle per second which is the Hertz ... ".

Giannis (eng.) adds a Logical-empirical MoR that was created by himself in order to
make  clear  to  his  students  what  “c/s”  means.  The  reason  for  this  modification  is  to
help students visualize a central notion in their profession.
Two physics participants mentioned that instead of proving the formula T=2πl/g (the
proof is in 3rd grade upper secondary school physics textbook- a Mathematical MoR),
they prefer to provide the formula and use the interactive physics software in order to
‘verify’ that the period of the oscillation is related to the above quantities in the way
represented in the formula. In this way they change a mathematical MoR to a logical-
empirical one (we consider that an argument that was made by digital technology is a
Logical-empirical MoR). They mention that in the verification process the students
were more involved than in the proof
practice and they are "more convinced of
its truth". As Ntinos (physics) mentions
"For many years the students thought that
the formula is something coming out of the
blue, now the digital technology could
help students to realize that this is not the
case". According to Ntinos this is very
important since "it influences students'
understanding" and make didactically
appropriate arguments on verifying
science Laws. Many participants mention
adding arguments (in our study MsoR) in
order to help their students visualize main

concepts in their profession.

The use of animations of periodic motions as
teaching tools (videos and educational softwares
e.g. interactive physics; Geogebra) is mentioned
by six teachers from the 13 participants. For
example, Vaggelis (physics) mentioned that
sometimes in his class uses videos showing
periodic macrocosmic and microcosmic
phenomena such as ''the oscillation of the
molecules in solids" (see Fig. II.12). Mostly this

Fig. II.12: An  case  of  adding  a
MoR in order to captivate students’
attention.

Fig. II.13: The textbook generic example
becomes ‘alive’ with the help of digital
technologies.
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happens in the introduction of the thematic in order to captivate his students’
attention. Magda (math) uses an animation (Geogebra) in order to make her students
visualize  better  the  textbook  generic  example  (see  Fig.  II.  13).  In  this  case,  the
textbook generic example becomes ‘alive’.

All teachers when introducing the notion of periodicity mention that they use every
day examples not included in their textbooks. These examples could be "the motion of
the pendulum clock" or "the weekly publication of magazines" or natural phenomena
taken such as the "the day-night shift" or "the phenomenon of the tides".  The use of
the periodic example of the “menstrual cycle” was mentioned by three teachers.
The reason for this enrichment is because they want to captivate their students’
attention. In most cases though this MoR (recalling students’ experiences with
periodic phenomena) seems to be disconnected from the textbook argumentation.
Sometimes this teachers’ attitude is in conflict with the use of examples in textbooks.
Examples in school texts seem to play a significant role in the inherent logic of new
knowledge development. Particularly, they are either the basis for generalization
(generic examples) or the applications of general statement.

“Teachers suggestions” (Common Task in Act 1 & Act 2)
In this task we asked teachers to write down their suggestions on how they could help
their students to develop a unified view on periodicity where aspects of the notion
from the different subjects coexist harmonically.

FINDINGS
The following categories emerged from the analysis of participants responses:

· provide many examples of everyday life periodic phenomena (e.g. the
periodic motion of the earth around the sun)

· define & explain carefully the mathematical models

· Help the students make links between the concrete situations and the
mathematical  objects  that  they  model  them  (e.g.,  use  animations  of
periodic motions)

· propose the use of inter disciplinary projects and co-operate with
educators from other subjects

The quantitative analysis of the 26 teachers who responded in this task we take the
following results. We have to mention that some teachers made more than one
suggestion.
TABLE II.15: Teachers’ suggestions

Categories
Frequency

N=26
(%)

Provide many examples of everyday life periodic phenomena (e.g. the
periodic motion of the earth around the sun).

46%

Help students to make links of the concrete situations with the mathematical
objects that they model them (e.g., by using animations of period motions).

39%

Define and explain carefully the mathematical models 38%
Propose the use of inter disciplinary projects and co-operate with teachers
from other subjects.

12%

In first place was the suggestion: ‘provide many examples of everyday life periodic
phenomena’. Teachers from all subjects proposed this category. In second place was
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the suggestion on “help students make links of the concrete situations with the
mathematical objects that they model them (e.g., by using animations of period
motions). The last category was ‘use of inter disciplinary projects and co-operate
with teachers from other subjects’ was proposed by only a few participants.

We have to add teachers’ ignorance of texts from other subjects. Physics teachers
never had the chance to see how mathematics textbooks introduce the students to the
notion or periodic function, nor how they address the sinusoidal curve. The same
applies to the mathematics teachers.

CONCLUDING REMARKS on PART IIb
50 secondary teachers from the subjects of engineering, mathematics and physics
participated in this part of our study. The analysis of teachers’ responses on the two
research activities raised four main issues: The first issue is that the sinusoidal curve
is qualified as the prototypical image of the notion across subjects. The second issue
is teachers’ willingness to enrich their teaching with every day images and examples
of periodic phenomena. The third issue is that although mathematics and physics
teachers share common learning objectives, images of periodicity and reasoning
practices they avoid co-operating on didactical issues. The last issue concerns
teachers’ preference to modify the textbook argumentation. It appears that teachers’
modifications might unconsciously influence severely the inherent logic of the
concept presentation in classrooms.

The sinusoidal curve is qualified as the prototypical image of the notion across
subjects, while the sinusoidal function seems to be a common teaching tool for
engineering, mathematics and physics educators. Mathematics educators mention
using sinusoidal functions, either to solve trigonometric equations, or to study their
characteristics (e.g., period, maximum values, etc.), while physics and engineering
educators mention using this function to model the periodical change of a number of
quantities in the course of time (Act 1/ task 1).
All participants mention a lot of examples used in their lesson when teaching aspects
of periodicity. These examples vary from phenomena close to students’ experiences
(menstrual cycle) to natural phenomena taken from the microcosm (the vibrations of
the particles) and the macrocosm (the motion of the planets) (Act 2).  Besides,  many
teachers suggest that making connections to everyday life periodic phenomena could
hep students to develop a unified view of periodicity. From the analysis of our data in
Act 2, it seems that teachers use every day phenomena mostly in order to stimulate
their  students'  attention.  This  teachers’  attitude  might  be  in  conflict  with  the  use  of
examples in textbooks. Examples in textbooks were used purposely either to make
generalizations (generic examples) or to provide applications of the notion presented
in the thematic unit.

In general, all participants were critical of the textbooks used in their classroom
teaching. Consequently, they prefer to modify parts of the new knowledge
organization provided in each thematic unit. The modifications mentioned by the
teachers could be omitting or adding or replacing the modes of reasoning presented in
the  textbooks.  These  modifications  are  taken  place  when (i)  they  value  the  MoR as
not  didactically  appropriate;  (ii)  they  aim  to  respond  to  students’  queries;  (iii)  they
cover  reasoning  gaps  in  the  school  text;  (iv)  they  aim  to  help  students  to  visualize
concepts; and (v) they want to captivate their students’ attention.
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Mathematics and physics teachers share common notions (e.g. periodicity); common
images (e.g. the sinusoidal curves); mostly common reasoning behaviours when
handling specific students’ responses and learning goals (e.g. modelling). Despite all
these commonalities it seems that co-operation with their colleagues in neighbouring
subjects in planning and reflecting on their teaching practices is not a preferable
attitude.
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Ch. 4

CONCLUSIONS of our STUDY

Learning and understanding periodicity involves reasoning about its properties and
characteristics, synthesizing aspects of the notion from different contexts and
epistemological fields and be able to apply them in a repertoire of reference practices
which include and the transfer of this knowledge in new settings.

In this study we investigated textbooks’ characteristics and teachers’ pedagogical
practices in terms of reasoning and argumentation, as these may be related to students’
learning and understanding periodicity. From textbook analysis, the crucial role of
argumentation in conceptualizing periodicity emerged. Subsequently, we investigated
how secondary teachers enact on the textbook argumentation and we tried to identify
how these two factors, textbooks and teachers’ practices could contribute or limit
students’ conceptualization of the notion.
The synthesis of our results provides us with evidence on the following issues:

· Productive links between textbook argumentation and conceptualization:
Argumentation in the ‘content presentation sections’ of a textbook is made through
the series of MsoR (parts  of  the  thematic  unit  that  state  a  syllogism  crucial  for  the
development of argumentation in the whole), the VR’s genre and the co-deployment
of the MsoR and VRs. In terms of MsoR, the empirical and logical-empirical MsoR
help the reader to make links between their sensory perceptions of the notion and its
general characteristics. The nomological MsoR indicate the epistemological and
ontological  aspects  of  periodicity  aimed  to  be  learnt  in  each  subject.  Finally,  the
mathematical MsoR provide support to abstract ways of thinking where
representations of periodicity are mostly symbolic in nature. In terms of VRs’ genre,
the photos and naturalistic drawings of periodic motions help readers to visualize
everyday periodic phenomena while the schematic representations and the graphs
mostly support abstract ways of thinking about the notion. We note that the absence of
particular MsoR and VRs or the functional connection of a VR with a MoR could
result in a text where conceptual elements of periodicity, or links that are important
for understanding are missed. Hence, we argue that inside a school text the
deployment of argumentation and conceptualization is inevitable, while understanding
through reading is viewed as occurring through the dialectical relationship between
these two channels of thought.

· Pragmatic considerations on readers’ understanding of the text argumentation
and how teachers might enact on this practice:

The analysis of textbooks argumentation indicated that reasoning gaps in texts could
influence understanding of the argumentation developed in the text (e.g. the
sinusoidal  curve  comes  arbitrary  in  a  physics  text).  Teacher  might  enact  on  this
practice by modifying the sequence of MsoR and hence influence the flow of
argumentation when teaching these specific thematic units. Teachers’ modification
could be made for several reasons (e.g., when valuing that a MoR is didactically
inappropriate or in order to stimulate their students’ attention). Besides, mathematics,
physics and engineering teachers mention that they enrich their teaching with every
day images and examples of periodic phenomena, besides the ones provided in the
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text. We argue that teachers’ appropriate modifications might sustain students’
visualization of periodic motions (e.g., by supporting logical-empirical MsoR with the
use of digital tools) or add to their understanding of text argumentation by covering
reasoning gaps in texts (e.g., physics teachers involve the trigonometric circle in order
to reason about the sinusoidal curve). In this case teachers’ modifications in most
cases enact constructively in students’ experiences with text argumentation. Besides,
there are some cases that the teacher unconsciously might limit the inherent logic of
the concept presentation of the text, either by omitting specific MsoR that are
important in the argumentation developed in a thematic unit, or by not placing the
every day examples of periodic phenomena as integral parts of the argumentation
developed in the thematic unit. This fact highlights the importance teachers, on one
side to appreciate all syllogisms from sensory perceptions to abstract thinking and
reasoning as important rational actions in concept formation, and on the other side the
need to make transparent to their students the distinction between the different roles
of the above range of syllogisms in the development of a sound argument. The fact,
that students are not on their own and naturally involved in reasoning and justification
practices, makes the above issue a teaching necessity.

· An attempt to explain why the main image of periodicity in texts and in
teachers’ practices (the sinusoidal curve) still is a source of students’
misconceptions

VRs as  images  of  periodicity  play  a  major  role  in  the  inherent  logic  of  the  concept
presentation in texts. The main images of periodicity are the sinusoidal curve and the
trigonometric circle. These two images are linked, since the sinusoidal curve comes as
a  result  of  a  series  of  MsoR  that  are  based  mostly  on  the  trigonometric  circle  (a
reasoning practice common in math, physics and engineering educational
community). The sinusoidal curve is acknowledged by all teachers as their main
teaching tool, while 20% of images in all school texts analyzed are sinusoidal graphs.
For  all  these  reasons  we  consider  the  sinusoidal  curve  as  the  prototypical  image  of
periodicity across subjects. This comes in conflict with undergraduate students’
misconceptions on the sinusoidal curve. Particularly, students consider that the
sinusoidal curve (f(x)=sinx) shares common properties (here the periodical behaviour)
with the function f(x) = e-bxsin(x). Possible explanations of this students’
misunderstanding could be: (a) In physics texts, the distinction of the two functions in
terms of their periodical behaviour is not so clear; (b) the absence of non-examples of
periodic functions in all texts; (c) students miss parts of the argumentation, where the
sinusoidal curve was defined (i.e. if readers do not pass through certain MsoR
resulting in the sinusoidal curve then important conceptual or logical elements may be
missing). Students’ overgeneralizations such as that any repeated function is
periodical are also highlighted in Buendia and Cordero’s study (2005).

It is common practice in Mathematics textbooks to avoid using photographs (that
represent particular instances) and the use of images that convey a generality is
prefered (Herbel-Eisenmann & Wagner, 2007). We argue that this practice is
purposeful, since authors seem to believe that these images do not support a ‘proper
mathematical’ argument. Although recent research has stressed the decisive and
prominent role of bodily actions and gestures in students’ elaboration of elementary,
as well as abstract mathematical knowledge (Núñez 2000), this is neglected by Greek
math textbooks’ authors. On the other side, physics textbooks try to bring the notion
closer to readers’ empirical experiences in the ‘content presentation sections’,
although this practice is not used also in the reasoning practices required in the
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‘textbook  proposed  exercises’.  Most  of  the  exercises  in  physics  and  almost  all  the
exercises in mathematics texts on periodicity are context-free. The above practices
could narrow students’ enrolment in understanding the different aspects of the notion
(e.g., modelling activities with real-life periodic motions) and hence influence its
thinking.

· Mathematics and physics: Students’ necessity to synthesize aspects of the two
subjects; teachers’ suggestions.

Mathematical and physics school practices are different cultural activities, since they
have different goals, purposes, and objectives. In general, mmathematics aims to use
problem solving to describe quantitative and spatial relationships of the physical
environment (National Council of Teachers of Mathematics, 2000) while physics
seeks through use of inquiry to describe and explain generalized patterns of events in
the natural world (National Research Council, 1996). Besides, our analysis highlights
ontological differences between physics and mathematics when ascending from
observations to generalizations. Particular, mathematical evidence-based reasoning
seems to be safer and more reliable than experimental evidence-based reasoning. The
role of evidence — circumstantial or supportive — seems to be a main issue in
scientific reasoning and the tentative nature of science (Ohertman & Lawson, 2008).
Above and beyond their differences, we argue that mathematics and physics share:
common practices (e.g., engage students in argumentation and reasoning); common
teaching tools on periodicity (e.g., the sinusoidal function); and common reasoning
behaviors when they argue on the validity of students’ justifications. Connecting
mathematics and physics instruction is considered as a central issue in the
contemporary research literature (Frykhlom & Glasson, 2005) since it can strengthen
students’ understanding of common and neighbouring notions. Furthermore, we argue
on the complexity of the engineering context where the above connections are not an
option for teachers and students but are obligatory practices.

Our study provides evidence on the difficulties students face when there was a need to
integrate knowledge from the two subjects and overcome conflicts among them (e.g.,
misconceptions about the function f(x) = e-bxsin(x)) or provide sufficient explanations
on an engineering context task. This creates a necessity for teachers to help their
students to develop a unified view on periodicity where aspects of the notion from the
different subjects coexist harmonically. Some of teachers’ suggestions on the above
necessity were: provide many examples of everyday life periodic phenomena and help
students make links of the concrete situations with the mathematical objects that
model  them  (e.g.,  by  using  animations  of  period  motions).  The  above  teachers’
suggestions  are  important  but  we  notice  that  the  practice  of  co-operation  among
colleagues of mathematics and science seems to be almost neglected by teachers. In
this way, the student is ‘left alone’ to make the appropriate connections and overcome
diversities among mathematics and physics common conceptions. To our view co-
operation among teachers of mathematics and science could help students realize the
differences and the commonalities mentioned above in the two subjects.

· Productive links between students’ conceptualization and the production of
sufficient justifications and explanations

Argumentation and reasoning seems to be a non-familiar practice for undergraduate
students. In the case of participating in this type of practice mostly logical-empirical
types of justifications were identified in their responses while rarely did they use
formal  definitions  as  warrants  in  their  responses  (e.g.,  even  mathematics
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undergraduate students avoid using the formal mathematical definition for periodic
functions). One reason for students’ reluctance to argue on their claims could be either
because argumentative-pedagogy is not a common practice in the Greek educational
system or because certain conceptual elements are not consciously comprehensible by
them. We argue that students’ explanations became more sophisticated when moving
from partial to sufficient explanations. We identified that this differentiation depends
on students’ abilities to express connections between different fields of knowledge in
an argumentative way. In this case, context-dependency is an action that fosters
students in developing a more articulated, and thereby more elaborated understanding
of the notion is occured.

Didactical implications
Findings can inform school textbooks’ authors as they highlight the importance of the
sequence of modes of reasoning and argumentation in students’ conceptualization of
periodical phenomena.

Teachers’ awareness of textbooks’ reasoning practices can play an important role in
teaching interventions. Especially mathematics and science teachers need to discern
the ontological and epistemological differences of science and mathematics textbooks
in terms of periodicity in order to be able to fill in reasoning and conceptual gaps.

To our view, practices that could help students in this direction could be:

· students’ participation in a wide range of reasoning practices (from sensory
perceptions to abstract thinking and reasoning) on periodicity where they
could overcome conflicts and conjectures;

· students’ participation in contextual activities with real life periodic
phenomena (e.g., problem solving);

· and teachers’ familiarization with cooperation practices with their colleagues
in neighboring subjects. This co-operation could involve sharing teaching
experiences and familiarizing with each other perceptions about the notion.

Some of our suggestions are:

· Developing innovative classroom material linked with contemporary learning
and teaching theories and that could initiate students’ integration of the two
cultures of inquiry (mathematical and scientific).

· Developing inquiry – based learning activities in our classrooms. Traditional
educational systems have worked in a way that discourages the natural process
of inquiry. Students learn not to ask too many questions, instead to listen and
repeat the expected answers. In inquiry - based learning students are
engageded in scientific reasoning and thinking; in producing alternative
arguments; in examining hypotheses and conjectures; and in responding
thoughtfully to their peers' and teachers’ mathematical and scientific claims
(Maaß & Artigue, 2013).

· Developing interdisciplinary communities of inquiry. The necessity for
teachers in neighboring subjects to co-operate in their school is evident in our
study. The teachers could share teaching experiences, provide teaching
suggestions, reflect on their practices and improve them (Jaworski, 2006).
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The above could contribute to students’ understanding of a scientific notion that is an
integral part of many scientific fields.
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