POTENT AND SELECTIVE INHIBITION OF HUMAN Ca²⁺-INDEPENDENT PHOSPHOLIPASE A₂ BY FLUOROKETONES # Anneta Smyrniotou,^a Aikaterini Nicolaou,^b Victoria Magrioti,^b Michael Creason,^c Ishita Shah,^c Violetta Constantinou-Kokotou,^a Edward A. Dennis,^c George Kokotos^b ^aChemical Laboratories, Agricultural University of Athens, Athens, Greece; ^bDepartment of Chemistry, University of Athens, Athens, Greece; ^cDepartment of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, USA. ### Introduction The superfamily of phospholipases A₂ (PLA₂) consists of hydrolytic enzymes that act upon the *sn-2* ester bond of phospholipids, releasing free fatty acids and lysophospholipids. The main representative of these fatty acids is arachidonic acid, which can be transformed into eicosanoids (prostaglandins, leukotriens, etc) by the action of other enzymes. Lysophospholipids are precursors for other bioactive compounds, such as platelet-activating factor (PAF). PAF and eicosanoids constitute basic mediators of inflammation. The three predominant groups of phospholipase A₂ found in human tissues are the cytosolic PLA₂ (cPLA₂), the calcium-independent PLA₂ (iPLA₂) and the secreted PLA₂ (sPLA₂). iPLA₂ has been proposed as a homeostatic enzyme involved in basal metabolism within the cell, but has also been found to be involved in diseases of the brain, the heart and the central nervous system, which makes this enzyme an attractive drug target. We have recently demonstrated that Ca²⁺-independent phospholipase A₂ (GVIA iPLA₂) plays a key-role in experimental autoimmune encephalomyelitis and that GVIA iPLA₂ is a novel target for the development of new therapies for multiple sclerosis.¹ A series of fluoroketones has been presented as iPLA₂ inhibitors and the structure-activity relationship has been evaluated.² To extend this research, we synthesized a variety of polyfluoroketones containing an aromatic ring and a four carbon atom chain between the ring and the polyfluoroketone group. #### **Synthesis** Commercially available aromatic aldehydes **1a-f** were used as starting materials, to prepare the desired fluoroketones (**4a-f**, **5a-f**, **6a**). Each aldehyde underwent a Horner – Wadsworth – Emmons reaction with triethyl-4-phosphonocrotonate in the presence of LiOH to produce the corresponding unsaturated ester **2a-f**. After catalytic hydrogenation and saponification with 1 N NaOH in ethanol we acquired the corresponding carboxylic acids **3a-f** which were converted to acyl chlorides by the oxalyl chloride/DMF method. In situ, acyl chlorides were treated with pyridine and trifluoroacetic anhydride or pentafluoropropionic anhydride or heptafluorobutanoic anhydride to provide trifluoromethyl ketones **4a-f**, pentafluoroethyl ketones **5a-f** and the heptafluoropropyl ketone **6a**, respectively (**Scheme 1**). **Scheme 1:** Synthesis of polyfluoroketones **Reagents and conditions**: a) C₂H₅OOCCH=CHCH₂P(=O)(OC₂H₅)₂, LiOH, THF, 77 °C, b) i) H₂, 10% Pd/C, EtOH, ii) NaOH 1N, EtOH, c) (COCl)₂, DMF, CH₂Cl₂, d) pyridine, (CF₃CO)₂O, CH₂Cl₂, 0 °C to r.t., e) pyridine, (CF₃CF₂CO)₂O, CH₂Cl₂, 0 °C to r.t., f) pyridine, (CF₃CF₂CF₂CO)₂O, CH₂Cl₂, 0 °C to r.t. # References 1.Kalyvas, A.; Baskakis, C.; Magrioti, V.; Constantinou-Kokotou, V.; Stephens, D.; Dennis, E. A.; Kokotos G.; David, S. *Brain* **2009**, *132*, 1221-1235 2. Kokotos, G.; Hsu, Y.-H.; Burke, J. E.; Baskakis, C.; Kokotos, C.G.; Magrioti, V.; Dennis, E. A. *J. Med. Chem.* **2010**, *53*, 3602-361. # Acknowledgement This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund. ## In vitro results All synthesized compounds were tested for inhibition on human GVIA iPLA₂, GIVA cPLA₂ and GV sPLA₂. (**Table 1**) The percentage of inhibition for each enzyme was determined at 0.091 mol fraction, and $X_{\rm I}(50)$ values were measured for inhibitors which showed more than 93% inhibition for an enzyme. When compared to the known inhibitor FKGK18, changing the position of the carbon chain on the naphthalene ring, leads to less potency, but higher selectivity. Increasing the number of fluorine atoms, GK172 and GK173 become less potent inhibitors of iPLA₂. When a methoxy group is added to the naphthalene ring, inhibitors GK213 and GK214 lose selectivity towards iPLA₂. The biphenyl group instead of the naphthalene shows a similar inhibition for both iPLA₂ and cPLA₂ (GK174, GK175). The insertion of a trifluoromethyl group on the aromatic ring presented excellent potency (GK178 and GK189), but poor selectivity. In the case of GK176 and GK188 the fluorine on the aromatic ring shows both great potency and selectivity towards iPLA₂. When the fluorine atom is replaced by a methoxy group, compounds GK177 and GK187 are currently the most potent and selective inhibitors for iPLA₂. Inhibitors GK176, GK177, GK187 and GK188 can be used to study the role of GVIA iPLA₂ in neurological disorders. **Table 1:** Inhibition of PLA₂ by fluoroketones | No | Structure | iPLA ₂ | | cPLA ₂ | | sPLA ₂ | |--------------|----------------------------------|-------------------|----------------------|-------------------|-----------------------|-------------------| | | | % inhibition | $X_{\mathrm{I}}(50)$ | % inhibition | $X_{\rm I}(50)$ | % inhibition | | FKGK11 | C_2F_5 | 99.4 | 0.0014 ± 0.0001 | N.D. | | 28 | | FKGK18 | CF ₃ | 99.9 | 0.0002 ± 0.0000 | 93.1 | 0.039 ± 0.001 | 36.8 | | GK171,
4a | CF ₃ | 98.7 | 0.0018 ± 0.0002 | 77.4 | | 31.9 | | GK172,
5a | C_2F_5 | 96.4 | 0.0034 ± 0.0002 | 64.0 | | 29.4 | | GK173,
6a | C ₃ F ₇ | 76.7 | | 60.4 | | 57.8 | | GK174,
4e | CF ₃ | 97.9 | 0.0189 ± 0.0045 | 96.5 | 0.0074
±
0.0003 | 40.5 | | GK175,
5e | C_2F_5 | 94.6 | 0.0134 ± 0.0017 | 72.6 | | 38.3 | | GK176,
4b | CF ₃ | 98.5 | 0.0002 ± 0.0000 | 41.4 | | N.D. | | GK177,
4d | CF ₃ | 99.8 | 0.0001 ± 0.0000 | 54.3 | | N.D. | | GK178,
4c | F ₃ C CF ₃ | 99.9 | 0.0002 ± 0.0000 | 83.9 | | 30.4 | | GK187,
5d | C_2F_5 | 99.8 | 0.0001 ± 0.0000 | 12.9 | | 32.8 | | GK188,
5b | C_2F_5 | 98.2 | 0.0003 ± 0.0000 | 22.2 | | 29.3 | | GK189,
5c | F_3 C C_2 F ₅ | 98.9 | 0.0003 ± 0.0001 | 62.5 | | 36.9 | | GK213,
4f | CF ₃ | 92.6 | | 85.5 | | 41.7 | | GK214,
5f | C_2F_5 | 92.5 | | 54.7 | | 63.1 | N.D. signifies compounds with less than 25% inhibition (or no detectable inhibition).