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Hyperforin, the most known member of this family, has been isolated from Hypericum perforatum (St. Johns’s wort), known for its antidepressant and
anticancer properties. There is a big interest in synthesizing Hyperforin’s analogues in order to improve the molecule’s activity.[*3] Up-to-date analogues showing
highest biological activity possess an enol hydroxy! free [*9l. Based on this literature background, our efforts focus on the design and synthesis of new analogues with
improved properties. In our lab, a new short biomimetic approach has been developed leading to the fully functionalized bicyclic core of type A acylphloroglucinols,
including Hyperforin.[2] Based on this strategy we targeted in two classes of compounds possessing either an sp?- or an sp3-carbon on C-7, starting from key
intermediate 1. A general route leading to 1 is depicted on Scheme 2. Thus, deacetylation of aldehyde Ac-1, led to analogue 2, which after Michael and Wittig
afforded sp® C-7 analogues 3 and 4, respectively (Scheme 3). Approaches to more sp? C-7 analogues including either Wittig on Ac-1 (Approach I, Scheme 4) or
deprotection after Wittig on Pv-1 led to no desirable results (Approach I). Thus, approach Il was attempted, based on establishing the desirable side chain
functionalization before alkylation step. Preliminary efforts for synthesis of chloride 5 from diol 6 led to degradation products. Biological activity results obtained
from our first derivatives will lead our design to a new generation of hyperforin analogues. Moreover, our efforts focus on the improvement of efficiency of our

methodology.
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Scheme 4. Attempts to synthesize more sp>-C-7 analogues
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