PROPERTIES OF EXTREMAL SEQUENCES FOR THE
BELLMAN FUNCTION OF THE DYADIC MAXIMAL
OPERATOR
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ABSTRACT. We prove a necessary condition that has every extremal
sequence for the Bellman function of the dyadic maximal operator. This
implies the weak-L? uniqueness for such a sequence.

1. INTRODUCTION

The dyadic maximal operator on R is defined by
1
(1.1) Mgp(x)=sup {@/ |p(u)|du: x € Q, Q@ C R is a dyadic cube}
Q

for every ¢ € L, .(R¥), where |- | is the Lebesgue measure on R* and the
dyadic cubes are those formed by the grids 27VZF, N =0,1,2,... .
It is well known that it satisfies the following weak type (1,1) inequality:
(12) oz € R : Mug(z) > A}| < %/ 6(w)|du,
{Magp>A}
for every ¢ € L*(R*) and A > 0.

From (1.2) it is easy to prove the following LP-inequality
p
(1.3) [Mad|l, < pTl”¢HP‘

It is easy to see that (1.2) is best possible, while (1.3) is sharp as it can be
seen in [W]. (See also [B1] and [B2] for general martingales).

A way of studying the dyadic maximal operator is to find certain re-
finements of the above inequalities.Concerning (1.2) refinements have been
studied in [MN2], [N1] and [N2], while for (1.3) the Bellman function of two
variables for p > 1, has been introduced by the following way:

1

. S _
Tp(f,F)—sup{@ /Q (Maoy 620, /Q o(u)du — f,

1

(1.4) —/ o (u)dus — F}
Ql Jq

where @ is a fixed dyadic cube on R*¥ and 0 < f? < F.
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2 ELEFTHERIOS N. NIKOLIDAKIS

The function given in (1.4) has been explicitely computed. Actually, this
is done in a much more general setting of a non-atomic probability measure
space (X, pu) where the dyadic sets are now given in a family of sets T,
called tree, which satisfies conditions similar to those that are satisfied by
the dyadic cubes on [0, 1]*.

Then the associated dyadic maximal operator M+ is defined by

(15) Mrd(z) = sup {ﬁ,) [1oldnivere T},

where ¢ € L' (X, p).
Then the Bellman function (for a given p > 1) of two variables associated
to M is given by

16) sy F)=sw{ [ Mrordusozo. [ ou=g. [ oau=r}

where 0 < fP < F.

In [M], (1.6) has been found to be S,(f, F) = Fuw,(f?/F)? where w, :
0,1] — [1, ]ﬁ} is the inverse function HI;1 of H, defined on [1, ]ﬁ] by
Hy(z) =—(p—1)zF + pzF~t.

As a result the Bellman function is independent of the measure space
(X, 1) and the underlying tree 7. Other approaches for the computation of
(1.4) can be seen in [NM] and [SSV].

In this paper we study those sequences of functions: (¢,),, that are
extremal for the Bellman function (1.6). That is ¢, : (X,u) — RT,

n=1,2,...satisfy [, ¢odp=f, [ $?dp=F and

(1.7) lim/ (Mron)Pdp = Fuw,(fP/F)P.
nJx

In Section 3 we prove the following

Theorem 1.1. Let ¢, : (X, u) — RT be as above. Then for every I € T,
1 1
1.8 lim—/¢ndu: f and lim—/(bfld,u: F.
(18) nop(l) Jr nou(l) Ji
Additionally:
1
lim—/./\/l On)Pdp = Fuw,(fP/F)P,
S S A
for every I € T. O

This gives as an immediate result that extremal functions do not exist for
the Bellman function. Another corollary is the weak-L” uniqueness of such a
sequence in all interesting cases. In other words if (¢, )n, (¢ ), are extremal
sequences for (1.4), then lim, fQ(qﬁn — p)hdp = 0, for every h € LP(Q),

where %+% = 1. We need also to mention that related results in connection
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with Kolmogorov’s inequality have been treated in [MN1], while in [N3] it
is given a characterization of such extremal sequences. More precisely it s
proved there that they actually behave approximately like eigenfunctions of
the dyadic maximal operator for a specific eigenvalue.

2. EXTREMAL SEQUENCES

Let (X, p) be a non-atomic probability measure space. We give the

following

Definition 2.1. A set T of measurable subsets of X will be called a tree if
the following are satisfied:

i) X € T and for every I € T, u(I) > 0.

ii) For every I € T there corresponds a finite or countable subset C'(I)
of T containing at least two elements such that
(a) the elements of C'(I) are disjoint subsets of I

(b) I =UC(I)
iii) T = U T(m), where Ty = {X} and
m>0
Ty = |J CW).
IET(m)
iv) The following holds lim sup wu(/)=0. O

m — o ]Elr(m)

Definition 2.2. Given a tree T we define the maximal operator associated
to it as follows:

PRPESNER -
for every ¢ € LY (X, ). O
From [M] we obtain the following:
Theorem 2.3. The following holds
sup { /X (Mo 620, [ odu=f, /X oy = F} — Fuy(f*/FY",
for 0 < fP < F. O
At last we give the following

Definition 2.4. Let (¢,), be a sequence of non-negative measurable func-
tions defined on X and 0 < f? < F',p > 1. (¢,), is called (p, f, F') extremal,
or simply extremal if the following hold:

/qﬁndu:f,/(bﬁd,u:F, for every n=1,2,...
X X
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im | (Mr6,d = Pa (7Y

3. MAIN THEOREM

Theorem 3.1. Let (¢,,), be an extremal sequence. Then for every I € T
the followz'ng hold:

i) hm /% w=f

i) hm,u( /(ﬁpd,u F
i) lim “(1[ f] M7, )Pdu = Fuw,(fP/F)P.

Proof. We remind that T = {X} and T = U Tm)- We prove this
m>0

theorem for I € 7(;). Then inductively it holds for every I € 7(,), m > 1.
Suppose then that Ty = {I, ¥ =1,2,...} and I = I;. We now set

1 1
Joi=—~ | Ondp, foo2=—F5—~ Pnd,
' u(1y) n ? (X N 1) X0
1
3.1) Fhi= (bpdu, n2= o~ ¢bdp, forn=1,2,...,
(3.1) e M([l) M(X N ) X0

The above sequences are obviously bounded, so passing to a subsequence

we may suppose that
limf,;,=f; and limF,; =F;, for i=1,2.

For any J € T define

1
M 0(t) = su —/ d :tEKET}, for t e J,
sott) =sup { = [ o J
where 7T is defined by
T,={KeT:KCJ}

Consider the measure space (J, £ i J)) the tree 7; and the associated

maximal operator M ;. Then using Theorem 2.3, we have that
1 oy Sy odn)"\"
62— [(Miopans — / e
p(J) S yordn

for every ¢ € LP(J), where w, : [0,1] — [1, z%} is Hp‘ , with

Hy(2) = =(p=1)=" +p="", = [1 ﬁ}
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Since H,, is decreasing we conclude from (3.2) that

HPQMT”’)Z 1 ([, 0dp)”
1

[, ordu Syt [, ordu

which gives

-1 [ (Moo *p(/qupd“> . ( [,<MJ¢>pdu)
(3.3) :W(/,¢dﬂ>p+5¢,J,

for some 4, ; > 0 positive constant depending on ¢ and J.
For ¢ = ¢, and J = 1I;, i = 1,2,... we obtain from (3.3)

1/p 1_%
—(p— 1)/(M1i¢n)pdu+p(/ qszdﬂ) : (/(an)pdu)
(3.4)
1 p ‘
B :u([i>p_1 ( I; ¢ndlu) * 6n,i7 for every n= 17 2’ ... and i= 17 27 cee e

Summing relations (3.4) for i > 2 we obtain

+00 400 1/p 17%
003 / Mudapdc+p3 ( / | ¢Zdu) ( / i(Mzicbn)pdu)
“+o0 1 P “+00
39 =3 (o) + 2

In view now of Holder’s inequality in its primitive form:
1/p 1/q
Sabs(Xat) ()

for a;,b; > 0 and ¢ = p/(p — 1), (3.5) gives

—(p— 1) As(n) + p( /X . dﬁdu)l/p ]
(3.6) _Z ( / ¢ndu> +Z(;M where

(3.7) o) = Y / (M6, )P

(In the last inequality we used the fact that X ~\ I} = U L).

We use now Holder’s inequality in the following form

AL+ X+ F AP A 5 AP
S 5t 5t Tt o
(o1+02+ -+ o)t~ of ob om
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where O'Z', Vi=1,2,...and \; > 0, and obtain:

(3-8) (/¢n > W(/){\Il¢ndﬂ)p:u(X\Il>fn,2'

We also set

(3.9) As(n) = / (Mrop,)Pdp, for n=1,2,....
Then by definition of).(/\\/lll we have that

(3.10) As(n) > As(n).

From the above we then have that:
(3.11) —(p-1) Ax(nipu(XNT) VP (Fo0) VP [ Ag ()] 7 = p(XNI0) (fo) 4680,

1) +oo
where 8, " > > 0y

By passing_to a subsequence we may suppose that lim A3(n) = As.

We will use now the following Lemma, the proof of which will be given
at the end of this section.

Lemma 3.2. If (¢,,), is extremal then we have that
lim p({Mr¢n = f}) = 0.

From this Lemma and Definitions (3.7) and (3.9) we easily obtain that
lim Ay(n) = lim As(n) = As, in view of the fact that [; € T for i =
2,3,... .. Then from (3.11) we conclude that

=0 (MrouPds OO E ([ (rora)

1 X\I1
(3-12)  =p(XN1;)(fa2)"+0,,
where 0/ > 6!, for every n € N.
In the same way we have that:

1

ey / (M dn)'dpu+ pul) 7 (Fn) V7 (/f <M7¢n>f’du) h

I
(3'13) = /‘(Il)(fn,l)p + 5;;7
where ¢/ is such that €/ > 0, 1, for every n € N.
Summing now (3.12) and (3.13) and using Holder’s inequality in both
previously mentioned forms we have that:

1—1
—(p—1) / (Myg)Pdu + pF'P (/ (M¢¢n)pdu>
X X
(3.14) > (1) (fan)? + (XN L) (fa2)? 40, 25 > P+ 0, + e,
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which gives

(3.15) —(p—1) /X (Mo Pdu +pF1/”( /X <M7¢n>pdu) o,

where ¥, >0/ +e/ . n=1,2,....
The hypothesis now for (¢,,) is that

im | (Mr6,du = P (7Y
This gives ¥, — 0 in (3.15 and so
o — 0,e — 0.
As a consequence we have

p() ()" + (XN L) (f2)" = f°

because of equality in (3.14), as n — +o0.

Since now pu(l)f1 + (X N I1)fo = f and t — ¥ is strictly convex on
(0, +00) we have that f; = fo = f.

Additionally 6 — 0, so because of (3.12) and the fact that fo = f we
immediately see that

1 1 p — P p
(3.16) 117{11m/x\h(/\47'¢n) dp = Fawp(f*/ F2)P.
Similarly
(317) héﬂﬁ/h(/\/lfrqﬁn)pd,u, = Flwp(fp/Fl)p-

Since (¢, ), is extremal the last two equations give
(3.18)  p(ly) - Frwp(f*/F1)P + p(X N\ D) - Fowp(f*/F2)P = Fw(f*/F).

But as we shall prove in Lemma 3.3 below the following function ¢
tw,(fP/t)P, te (fP,+o0) is strictly concave. So since p(ly) Fi+u(XN\I) Fo=F
we have because of (3.18) that F; = I, = F. Then since (3.17) holds we
conclude that

1 1 p — P p
i = [ (Mo, Pdp = Py FY.

and Theorem 3.1 is now proved. (I

We prove now the following

Lemma 3.3. Let G : (1,+00) — R* defined by G(t) = tw,(1/t)?. Then

G s strictly concave.
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Proof. It is known from [M] that w, satisfies

d 1 wy(x)
— P=— £ 1].
dx[wp(xﬂ p— lwp(x) o 17 T e [07 }
So we can easily see that
1 1 1
G'(t) = wy(1/t)P + <p(1/) and

p—1tw,(1/t)—1’

ey = L L)Y
0551 (Gh )

where ¢ is defined on (1, +00) by ¢(t) = w,(1/t). Since ¢'(t) > 0, V¢ > 1,
we have that G"(t) < 0, V¢ > 1 and Lemma 3.3 is proved. O

We continue now with

Proof of Lemma 3.1: Let us suppose first that ¢,, are T-simple functions
that is for every n, there exists a m, such that ¢, is constant on each
I € Tim,). As a consequence ¢, is T-good in the sense of [M], for every
n. If we look at the proof of Lemma 9 in [M] p. 324-326 we see that in

all inequalities (4.20), (4.22), (4.23), (4.24) we should have equality in the
1 _ (-1)Bp% . 1
(B+1=Bp)P~! (B+1)P (B+1)p=12

for 8 = w,(f?/F)—1, where py = % = a%, where a%y = p({Mro, = f}).
But this can happen only if @’y — 0. So the proof is completed in the

limit. So as a result we must have that

case of T-simple functions. As for the general case, it is not difficult to see
that if (¢, ), is an extremal sequence of measurable functions, then we can
construct a sequence of T-simple functions (¢,), such that [  Undp = f,
Jx ¥Pdp < F and

fim [ 02dp = P, tim [ (M, = Fo (/P

Additionally, we can arrange everything in such a way that {Mr¢,, = f} C
M, = [}

Using the same arguments as before for (1,,), we can prove that
lim p({ Mz, = f}) =0. So lim pu({Mr¢, = f}) =0 and Lemma 3.2 is
p?oved. " 0

We now give some applications of the above.

First we prove the following

Corollary 3.4. If 0 < fP < F then there do not exist extremal functions
for the Bellman function T,(f, F') described in (1.4).



DYADIC MAXIMAL OPERATORS 9

Proof. Let ¢ be an extremal function for (1.4). Applying Theorem 3.1 we

see that
1

pu(l)
for every I dyadic subcube of Q.

_ B P
/chdu f and u(])/lédu F,

As we can see in [G] inequality (1.2) implies that the base of dyadic sets
of the tree T differentiates L'(Q). That is

¢(r) =f ae and
¢P(x) =F a.e.

This gives fP = F, which is a contradiction. U
We also prove

Corollary 3.5. Let T,(f,F) be described by (1.4). Then if (¢n)n, (¥n)n

w(L

are extremal sequences for this function, we must have ¢, — 1, — 0, as

n — —4oo.

Proof. Of course we have that

o1
llmm/¢n = hrrbnm/[zﬁn(u)du = f.

So lim / (pn — ¥n)&r(u)du = 0, f0r every dyadic subcube I C Q.
" JaQ
Since linear combinations of the characteristic functions of the dyadic
subcubes of ) are dense in L?(Q) we should have that lim / (pn—1n)h =0,

for every h € L(Q),where ¢ = -5 that is ¢,, — Uy =5 O asn — +oo. J
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